76 research outputs found

    Developing theoretical foundations for runtime enforcement

    Get PDF
    The ubiquitous reliance on software systems is increasing the need for ensuring their correctness. Runtime enforcement is a monitoring technique that uses moni- tors that can transform the actions of a system under scrutiny in order to alter its runtime behaviour and keep it in line with a correctness specification; these type of enforcement monitors are often called transducers. In runtime enforcement there is often no clear separation between the specification language describing the cor- rectness criteria that a system must satisfy, and the monitoring mechanism that actually ensures that these criteria are met. We thus aim to adopt a separation of concerns between the correctness specification describing what properties the sys- tem should satisfy, and the monitor describing how to enforce these properties. In this thesis we study the enforceability of the highly expressive branching time logic μHML, in a bid to identify a subset of this logic whose formulas can be adequately enforced by transducers at runtime. We conducted our study in relation to two different enforcement instrumentation settings, namely, a unidirectional setting that is simpler to understand and formalise but limited in the type of system actions it can transform at runtime, and a bidirectional one that, albeit being more complex, it allows transducers to effect and modify a wider set of system actions. During our investigation we define the behaviour of enforcement transducers and how they should be embedded with a system to achieve unidirectional and bidirectional enforcement. We also investigate what it means for a monitor to adequately enforce a logic formula, and define the necessary criteria that a monitor must satisfy in order to be adequate. Since enforcement monitors are highly intrusive, we also define a notion of optimality to use as a guide for identifying the least intrusive monitor that adequately enforces a formula. Using these enforcement definitions, we identify a μHML fragment that can be adequately enforced via enforcement transducers that drop the execution of certain actions. We then show that this fragment is maximally expressive, i.e., it is the largest subset that can be enforced via these type of enforcement monitors. We finally look into static alternatives to runtime enforcement and identify a static analysis technique that can also enforce the identified μHML fragment, but without requiring the system to execute

    The word problem and combinatorial methods for groups and semigroups

    Get PDF
    The subject matter of this thesis is combinatorial semigroup theory. It includes material, in no particular order, from combinatorial and geometric group theory, formal language theory, theoretical computer science, the history of mathematics, formal logic, model theory, graph theory, and decidability theory. In Chapter 1, we will give an overview of the mathematical background required to state the results of the remaining chapters. The only originality therein lies in the exposition of special monoids presented in §1.3, which uni.es the approaches by several authors. In Chapter 2, we introduce some general algebraic and language-theoretic constructions which will be useful in subsequent chapters. As a corollary of these general methods, we recover and generalise a recent result by Brough, Cain & Pfei.er that the class of monoids with context-free word problem is closed under taking free products. In Chapter 3, we study language-theoretic and algebraic properties of special monoids, and completely classify this theory in terms of the group of units. As a result, we generalise the Muller-Schupp theorem to special monoids, and answer a question posed by Zhang in 1992. In Chapter 4, we give a similar treatment to weakly compressible monoids, and characterise their language-theoretic properties. As a corollary, we deduce many new results for one-relation monoids, including solving the rational subset membership problem for many such monoids. We also prove, among many other results, that it is decidable whether a one-relation monoid containing a non-trivial idempotent has context-free word problem. In Chapter 5, we study context-free graphs, and connect the algebraic theory of special monoids with the geometric behaviour of their Cayley graphs. This generalises the geometric aspects of the Muller-Schupp theorem for groups to special monoids. We study the growth rate of special monoids, and prove that a special monoid of intermediate growth is a group

    Efficient Analysis and Synthesis of Complex Quantitative Systems

    Get PDF

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    28th International Symposium on Temporal Representation and Reasoning (TIME 2021)

    Get PDF
    The 28th International Symposium on Temporal Representation and Reasoning (TIME 2021) was planned to take place in Klagenfurt, Austria, but had to move to an online conference due to the insecurities and restrictions caused by the pandemic. Since its frst edition in 1994, TIME Symposium is quite unique in the panorama of the scientifc conferences as its main goal is to bring together researchers from distinct research areas involving the management and representation of temporal data as well as the reasoning about temporal aspects of information. Moreover, TIME Symposium aims to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for exchange among researchers from the areas of artifcial intelligence, database management, logic and verifcation, and beyond
    corecore