3,599 research outputs found

    Empowerment or Engagement? Digital Health Technologies for Mental Healthcare

    Get PDF
    We argue that while digital health technologies (e.g. artificial intelligence, smartphones, and virtual reality) present significant opportunities for improving the delivery of healthcare, key concepts that are used to evaluate and understand their impact can obscure significant ethical issues related to patient engagement and experience. Specifically, we focus on the concept of empowerment and ask whether it is adequate for addressing some significant ethical concerns that relate to digital health technologies for mental healthcare. We frame these concerns using five key ethical principles for AI ethics (i.e. autonomy, beneficence, non-maleficence, justice, and explicability), which have their roots in the bioethical literature, in order to critically evaluate the role that digital health technologies will have in the future of digital healthcare

    Guideline-Based Decision Support Systems for Prevention and Management of Chronic Diseases

    Get PDF

    A model-driven transformation approach for the modelling of processes in clinical practice guidelines

    Get PDF
    Clinical Practice Guidelines (CPGs) include recommendations aimed at optimising patient care, informed by a review of the available clinical evidence. To achieve their potential benefits, CPG should be readily available at the point of care. This can be done by translating CPG recommendations into one of the languages for Computer-Interpretable Guidelines (CIGs). This is a difficult task for which the collaboration of clinical and technical staff is crucial. However, in general CIG languages are not accessible to non-technical staff. We propose to support the modelling of CPG processes (and hence the authoring of CIGs) based on a transformation, from a preliminary specification in a more accessible language into an implementation in a CIG language. In this paper, we approach this transformation following the Model-Driven Development (MDD) paradigm, in which models and transformations are key elements for software development. To demonstrate the approach, we implemented and tested an algorithm for the transformation from the BPMN language for business processes to the PROforma CIG language. This implementation uses transformations defined in the ATLAS Transformation Language. Additionally, we conducted a small experiment to assess the hypothesis that a language such as BPMN can facilitate the modelling of CPG processes by clinical and technical staff.Funding for open access charge: CRUE-Universitat Jaume

    Application of a conceptual framework for the modelling and execution of clinical guidelines as networks of concurrent processes

    Get PDF
    We present a conceptual framework for modelling clinical guidelines as networks of concurrent processes. This enables the guideline to be partitioned and distributed at run-time across a knowledge-based telemedicine system, which is distributed by definition but whose exact physical configuration can only be determined after design-time by considering, amongst other factors, the individual patient's needs. The framework was applied to model a clinical guideline for gestational diabetes mellitus and to derive a prototype that executes the guideline on a smartphone. The framework is shown to support the full development trajectory of a decision support system, including analysis, design and implementation

    GLARE-SSCPM: an Intelligent System to Support the Treatment of Comorbid Patients

    Get PDF
    The development of software tools supporting physicians in the treatment of comorbid patients is a challenging goal and a hot topic in Medical Informatics and Artificial Intelligence. Computer Interpretable Guidelines (CIGs) are consolidated tools to support physicians with evidence-based recommendations in the treatment of patients affected by a specific disease. However, the applications of two or more CIGs on comorbid patients is critical, since dangerous interactions between (the effects of) actions from different CIGs may arise. GLARE-SSCPM is the first tool supporting, in an integrated way, (i) the knowledge-based detection of interactions, (ii) the management of the interactions, and (iii) the final merge of (part of) the CIGs operating on the patient. GLARE-SSCPM is characterized by being very supportive to physicians, providing them support for focusing, interaction detection, and for an hypothesize and test approach to manage the detected interactions. To achieve such goals, it provides advanced Artificial Intelligence techniques. Preliminary tests in the educational context, within the RoPHS project, have provided encouraging results

    Status and recommendations of technological and data-driven innovations in cancer care:Focus group study

    Get PDF
    Background: The status of the data-driven management of cancer care as well as the challenges, opportunities, and recommendations aimed at accelerating the rate of progress in this field are topics of great interest. Two international workshops, one conducted in June 2019 in Cordoba, Spain, and one in October 2019 in Athens, Greece, were organized by four Horizon 2020 (H2020) European Union (EU)-funded projects: BOUNCE, CATCH ITN, DESIREE, and MyPal. The issues covered included patient engagement, knowledge and data-driven decision support systems, patient journey, rehabilitation, personalized diagnosis, trust, assessment of guidelines, and interoperability of information and communication technology (ICT) platforms. A series of recommendations was provided as the complex landscape of data-driven technical innovation in cancer care was portrayed. Objective: This study aims to provide information on the current state of the art of technology and data-driven innovations for the management of cancer care through the work of four EU H2020-funded projects. Methods: Two international workshops on ICT in the management of cancer care were held, and several topics were identified through discussion among the participants. A focus group was formulated after the second workshop, in which the status of technological and data-driven cancer management as well as the challenges, opportunities, and recommendations in this area were collected and analyzed. Results: Technical and data-driven innovations provide promising tools for the management of cancer care. However, several challenges must be successfully addressed, such as patient engagement, interoperability of ICT-based systems, knowledge management, and trust. This paper analyzes these challenges, which can be opportunities for further research and practical implementation and can provide practical recommendations for future work. Conclusions: Technology and data-driven innovations are becoming an integral part of cancer care management. In this process, specific challenges need to be addressed, such as increasing trust and engaging the whole stakeholder ecosystem, to fully benefit from these innovations
    • …
    corecore