1,492 research outputs found

    Improving Bacteria Controller Efficiency

    Get PDF
    We present a novel approach that would enable the placement of dynamic sensor platforms in the most optimal areas for data collection in an environment of any size. Our approach would ensure that more sensors are placed in areas that contain interesting data and less in areas with little or no data. In this paper, we use a bacteria controller to navigate the environment in the search of interesting data and show that the addition of a flocking algorithm improves the chances of finding data

    SwarMAV: A Swarm of Miniature Aerial Vehicles

    Get PDF
    As the MAV (Micro or Miniature Aerial Vehicles) field matures, we expect to see that the platform's degree of autonomy, the information exchange, and the coordination with other manned and unmanned actors, will become at least as crucial as its aerodynamic design. The project described in this paper explores some aspects of a particularly exciting possible avenue of development: an autonomous swarm of MAVs which exploits its inherent reliability (through redundancy), and its ability to exchange information among the members, in order to cope with a dynamically changing environment and achieve its mission. We describe the successful realization of a prototype experimental platform weighing only 75g, and outline a strategy for the automatic design of a suitable controller

    Environment Orientation : a structured simulation approach for agent-based complex systems

    Get PDF
    Complex systems are collections of independent agents interacting with each other and with their environment to produce emergent behaviour. Agent-based computer simulation is one of the main ways of studying complex systems. A naive approach to such simulation can fare poorly, due to large communication overhead, and due to the scope for deadlock between the interacting agents sharing a computational platform. Agent interaction can instead be considered entirely from the point of view of the environment(s) within which the agents interact. Structuring a simulation using such Environment Orientation leads to a simulation that reduces communication overhead, that is effectively deadlock-free, and yet still behaves in the manner required. Additionally the Environment Orientation architecture eases the development of more sophisticated large-scale simulations, with multiple kinds of complex agents, situated in and interacting with multiple kinds of environments. We describe the Environment Orientation simulation architecture. We report on a number of experiments that demonstrate the effectiveness of the Environment Orientation approach: a simple flocking system, a flocking system with multiple sensory environments, and a flocking system in an external environment

    Cost Adaptation for Robust Decentralized Swarm Behaviour

    Full text link
    Decentralized receding horizon control (D-RHC) provides a mechanism for coordination in multi-agent settings without a centralized command center. However, combining a set of different goals, costs, and constraints to form an efficient optimization objective for D-RHC can be difficult. To allay this problem, we use a meta-learning process -- cost adaptation -- which generates the optimization objective for D-RHC to solve based on a set of human-generated priors (cost and constraint functions) and an auxiliary heuristic. We use this adaptive D-RHC method for control of mesh-networked swarm agents. This formulation allows a wide range of tasks to be encoded and can account for network delays, heterogeneous capabilities, and increasingly large swarms through the adaptation mechanism. We leverage the Unity3D game engine to build a simulator capable of introducing artificial networking failures and delays in the swarm. Using the simulator we validate our method on an example coordinated exploration task. We demonstrate that cost adaptation allows for more efficient and safer task completion under varying environment conditions and increasingly large swarm sizes. We release our simulator and code to the community for future work.Comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Internal agent states : experiments using the swarm leader concept

    Get PDF
    In recent years, an understanding of the operating principles and stability of natural swarms has proven to be a useful tool for the design and control of artificial robotic agents. Many robotic systems, whose design or control principals are inspired by behavioural aspects of real biological systems such as leader-follower relationship, have been developed. We introduced an algorithm which successfully enhances the navigation performance of a swarm of robots using the swarm leader concept. This paper presents some applications based on that work using the simulations and experimental implementation using a swarming behaviour test-bed at the University of Strathclyde. Experimental and simulation results match closely in a way that confirms the efficiency of the algorithm as well as its applicability

    Evolution of Neural Networks for Helicopter Control: Why Modularity Matters

    Get PDF
    The problem of the automatic development of controllers for vehicles for which the exact characteristics are not known is considered in the context of miniature helicopter flocking. A methodology is proposed in which neural network based controllers are evolved in a simulation using a dynamic model qualitatively similar to the physical helicopter. Several network architectures and evolutionary sequences are investigated, and two approaches are found that can evolve very competitive controllers. The division of the neural network into modules and of the task into incremental steps seems to be a precondition for success, and we analyse why this might be so
    corecore