49 research outputs found

    Wide Band Gap Devices and Their Application in Power Electronics

    Get PDF
    Power electronic systems have a great impact on modern society. Their applications target a more sustainable future by minimizing the negative impacts of industrialization on the environment, such as global warming effects and greenhouse gas emission. Power devices based on wide band gap (WBG) material have the potential to deliver a paradigm shift in regard to energy efficiency and working with respect to the devices based on mature silicon (Si). Gallium nitride (GaN) and silicon carbide (SiC) have been treated as one of the most promising WBG materials that allow the performance limits of matured Si switching devices to be significantly exceeded. WBG-based power devices enable fast switching with lower power losses at higher switching frequency and hence, allow the development of high power density and high efficiency power converters. This paper reviews popular SiC and GaN power devices, discusses the associated merits and challenges, and finally their applications in power electronics

    Power Converters for Photovoltaic Energy Generation

    Get PDF

    Technology for large space systems: A special bibliography with indexes (supplement 05)

    Get PDF
    This bibliography lists 298 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1981 and June 30, 1981. Its purpose is to provide helpful, information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments

    SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST, PRESENT AND FUTURE

    Get PDF
    Chapter 8: Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerato

    Analysis, modeling and design of energy management and multisource power systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 581-596).Transformative impacts on our energy security rely on creative approaches for consumption and generation of electricity. Technological contributions can impact both areas if they focus on problems of scale. For example, occupancy-based electrical loads (HVAC and lighting) accounted for roughly 50% of the total consumed electricity in the U.S. in 2008. Meanwhile, roughly 50% of consumed oil in the U.S. is imported. The U.S. Department of Energy has appropriately identified "sensing and measurement" as one of the "five fundamental technologies" essential for achieving energy security. Complementing reductions in consumption with increases in deployment of fossil-fuel-independent generation (solar and wind) and energy storage (batteries, capacitors and fuel cells) will yield a two-fold impact. Lofty energy security goals can be made realizable by aggressive application of inexpensive technologies for minimizing waste and by maximizing energy availability from desirable sources. Long-standing problems in energy consumption and generation can be addressed by adding degrees of freedom to sensing and power conversion systems using multiple electrical sources. This principal drove the invention of the hybrid electric vehicle, which achieves efficiency increases by combining the energy capacity of gasoline with the flexible storage capability of batteries. Similarly, fresh strategies for electrical circuit design, control, and estimation in systems with multiple electrical sources can minimize consumption, extend the useful life of storage, and improve the efficiency of generation. A solar array constitutes a grid or network of panels or cells that may best be modeled and treated as independent sources needing careful control to maximize overall power generation. A fuel cell stack, an array of sources in its own right, is best used in a hybrid arrangement with batteries or capacitors to mitigate the impact of electrical transients. Meanwhile, room lighting constitutes a network of multiple electrostatic field sources that can be particularly useful for occupancy detection. Exploiting performance benefits of multi-source electrical networks requires an increased flexibility in the analysis required to make informed design choices. This thesis addresses the added complexity with linear analytical and modeling approaches that reveal the salient features of complicated multisource systems. Examples and prototypes are presented in capacitive sensing occupancy detectors, hybrid power systems and multi-panel solar arrays.by John Jacob Cooley.Ph.D

    Many-core architectures with time predictable execution Support for hard real-time applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 183-193).Hybrid control systems are a growing domain of application. They are pervasive and their complexity is increasing rapidly. Distributed control systems for future "Intelligent Grid" and renewable energy generation systems are demanding high-performance, hard real-time computation, and more programmability. General-purpose computer systems are primarily designed to process data and not to interact with physical processes as required by these systems. Generic general-purpose architectures even with the use of real-time operating systems fail to meet the hard realtime constraints of hybrid system dynamics. ASIC, FPGA, or traditional embedded design approaches to these systems often result in expensive, complicated systems that are hard to program, reuse, or maintain. In this thesis, we propose a domain-specific architecture template targeting hybrid control system applications. Using power electronics control applications, we present new modeling techniques, synthesis methodologies, and a parameterizable computer architecture for these large distributed control systems. We propose a new system modeling approach, called Adaptive Hybrid Automaton, based on previous work in control system theory, that uses a mixed-model abstractions and lends itself well to digital processing. We develop a domain-specific architecture based on this modeling that uses heterogeneous processing units and predictable execution, called MARTHA. We develop a hard real-time aware router architecture to enable deterministic on-chip interconnect network communication. We present several algorithms for scheduling task-based applications onto these types of heterogeneous architectures. We create Heracles, an open-source, functional, parameterized, synthesizable many-core system design toolkit, that can be used to explore future multi/many-core processors with different topologies, routing schemes, processing elements or cores, and memory system organizations. Using the Heracles design tool we build a prototype of the proposed architecture using a state-of-the-art FPGA-based platform, and deploy and test it in actual physical power electronics systems. We develop and release an open-source, small representative set of power electronics system applications that can be used for hard real-time application benchmarking.by Michel A. Kinsy.Ph.D

    Electronic Nanodevices

    Get PDF
    The start of high-volume production of field-effect transistors with a feature size below 100 nm at the end of the 20th century signaled the transition from microelectronics to nanoelectronics. Since then, downscaling in the semiconductor industry has continued until the recent development of sub-10 nm technologies. The new phenomena and issues as well as the technological challenges of the fabrication and manipulation at the nanoscale have spurred an intense theoretical and experimental research activity. New device structures, operating principles, materials, and measurement techniques have emerged, and new approaches to electronic transport and device modeling have become necessary. Examples are the introduction of vertical MOSFETs in addition to the planar ones to enable the multi-gate approach as well as the development of new tunneling, high-electron mobility, and single-electron devices. The search for new materials such as nanowires, nanotubes, and 2D materials for the transistor channel, dielectrics, and interconnects has been part of the process. New electronic devices, often consisting of nanoscale heterojunctions, have been developed for light emission, transmission, and detection in optoelectronic and photonic systems, as well for new chemical, biological, and environmental sensors. This Special Issue focuses on the design, fabrication, modeling, and demonstration of nanodevices for electronic, optoelectronic, and sensing applications

    Reduced-order modeling of power electronics components and systems

    Get PDF
    This dissertation addresses the seemingly inevitable compromise between modeling fidelity and simulation speed in power electronics. Higher-order effects are considered at the component and system levels. Order-reduction techniques are applied to provide insight into accurate, computationally efficient component-level (via reduced-order physics-based model) and system-level simulations (via multiresolution simulation). Proposed high-order models, verified with hardware measurements, are, in turn, used to verify the accuracy of final reduced-order models for both small- and large-signal excitations. At the component level, dynamic high-fidelity magnetic equivalent circuits are introduced for laminated and solid magnetic cores. Automated linear and nonlinear order-reduction techniques are introduced for linear magnetic systems, saturated systems, systems with relative motion, and multiple-winding systems, to extract the desired essential system dynamics. Finite-element models of magnetic components incorporating relative motion are set forth and then reduced. At the system level, a framework for multiresolution simulation of switching converters is developed. Multiresolution simulation provides an alternative method to analyze power converters by providing an appropriate amount of detail based on the time scale and phenomenon being considered. A detailed full-order converter model is built based upon high-order component models and accurate switching transitions. Efficient order-reduction techniques are used to extract several lower-order models for the desired resolution of the simulation. This simulation framework is extended to higher-order converters, converters with nonlinear elements, and closed-loop systems. The resulting rapid-to-integrate component models and flexible simulation frameworks could form the computational core of future virtual prototyping design and analysis environments for energy processing units
    corecore