9 research outputs found

    A computational model of visual attention.

    Get PDF
    Visual attention is a process by which the Human Visual System (HVS) selects most important information from a scene. Visual attention models are computational or mathematical models developed to predict this information. The performance of the state-of-the-art visual attention models is limited in terms of prediction accuracy and computational complexity. In spite of significant amount of active research in this area, modelling visual attention is still an open research challenge. This thesis proposes a novel computational model of visual attention that achieves higher prediction accuracy with low computational complexity. A new bottom-up visual attention model based on in-focus regions is proposed. To develop the model, an image dataset is created by capturing images with in-focus and out-of-focus regions. The Discrete Cosine Transform (DCT) spectrum of these images is investigated qualitatively and quantitatively to discover the key frequency coefficients that correspond to the in-focus regions. The model detects these key coefficients by formulating a novel relation between the in-focus and out-of-focus regions in the frequency domain. These frequency coefficients are used to detect the salient in-focus regions. The simulation results show that this attention model achieves good prediction accuracy with low complexity. The prediction accuracy of the proposed in-focus visual attention model is further improved by incorporating sensitivity of the HVS towards the image centre and the human faces. Moreover, the computational complexity is further reduced by using Integer Cosine Transform (ICT). The model is parameter tuned using the hill climbing approach to optimise the accuracy. The performance has been analysed qualitatively and quantitatively using two large image datasets with eye tracking fixation ground truth. The results show that the model achieves higher prediction accuracy with a lower computational complexity compared to the state-of-the-art visual attention models. The proposed model is useful in predicting human fixations in computationally constrained environments. Mainly it is useful in applications such as perceptual video coding, image quality assessment, object recognition and image segmentation

    Activity in area V3A predicts positions of moving objects

    Get PDF
    No description supplie

    BlickpunktabhÀngige Computergraphik

    Get PDF
    Contemporary digital displays feature multi-million pixels at ever-increasing refresh rates. Reality, on the other hand, provides us with a view of the world that is continuous in space and time. The discrepancy between viewing the physical world and its sampled depiction on digital displays gives rise to perceptual quality degradations. By measuring or estimating where we look, gaze-contingent algorithms aim at exploiting the way we visually perceive to remedy visible artifacts. This dissertation presents a variety of novel gaze-contingent algorithms and respective perceptual studies. Chapter 4 and 5 present methods to boost perceived visual quality of conventional video footage when viewed on commodity monitors or projectors. In Chapter 6 a novel head-mounted display with real-time gaze tracking is described. The device enables a large variety of applications in the context of Virtual Reality and Augmented Reality. Using the gaze-tracking VR headset, a novel gaze-contingent render method is described in Chapter 7. The gaze-aware approach greatly reduces computational efforts for shading virtual worlds. The described methods and studies show that gaze-contingent algorithms are able to improve the quality of displayed images and videos or reduce the computational effort for image generation, while display quality perceived by the user does not change.Moderne digitale Bildschirme ermöglichen immer höhere Auflösungen bei ebenfalls steigenden Bildwiederholraten. Die RealitĂ€t hingegen ist in Raum und Zeit kontinuierlich. Diese Grundverschiedenheit fĂŒhrt beim Betrachter zu perzeptuellen Unterschieden. Die Verfolgung der Aug-Blickrichtung ermöglicht blickpunktabhĂ€ngige Darstellungsmethoden, die sichtbare Artefakte verhindern können. Diese Dissertation trĂ€gt zu vier Bereichen blickpunktabhĂ€ngiger und wahrnehmungstreuer Darstellungsmethoden bei. Die Verfahren in Kapitel 4 und 5 haben zum Ziel, die wahrgenommene visuelle QualitĂ€t von Videos fĂŒr den Betrachter zu erhöhen, wobei die Videos auf gewöhnlicher Ausgabehardware wie z.B. einem Fernseher oder Projektor dargestellt werden. Kapitel 6 beschreibt die Entwicklung eines neuartigen Head-mounted Displays mit UnterstĂŒtzung zur Erfassung der Blickrichtung in Echtzeit. Die Kombination der Funktionen ermöglicht eine Reihe interessanter Anwendungen in Bezug auf Virtuelle RealitĂ€t (VR) und Erweiterte RealitĂ€t (AR). Das vierte und abschließende Verfahren in Kapitel 7 dieser Dissertation beschreibt einen neuen Algorithmus, der das entwickelte Eye-Tracking Head-mounted Display zum blickpunktabhĂ€ngigen Rendern nutzt. Die QualitĂ€t des Shadings wird hierbei auf Basis eines Wahrnehmungsmodells fĂŒr jeden Bildpixel in Echtzeit analysiert und angepasst. Das Verfahren hat das Potenzial den Berechnungsaufwand fĂŒr das Shading einer virtuellen Szene auf ein Bruchteil zu reduzieren. Die in dieser Dissertation beschriebenen Verfahren und Untersuchungen zeigen, dass blickpunktabhĂ€ngige Algorithmen die DarstellungsqualitĂ€t von Bildern und Videos wirksam verbessern können, beziehungsweise sich bei gleichbleibender BildqualitĂ€t der Berechnungsaufwand des bildgebenden Verfahrens erheblich verringern lĂ€sst

    Visibility and acceptance of discrete-sampling artifacts in visual displays

    Get PDF
    Ph. D. ThesisDigital visual displays are aimed to provide an illusion of a continuous reality through a discrete presentation of visual information. This thesis explored three topics on (i) angular, (ii) spatial, and (iii) temporal sampling characteristics, related to distortion visibility, acceptance, and discomfort. In the first topic, we addressed the issue of optimizing the view density in continuous parallax visualization by replicating the changing views of a 3-D object for a moving observer. We measured the visibility of the related artifacts and evaluated the performance of full-reference visual quality metrics. We found that the state-of-the-art metrics can indirectly characterize artifact visibility and established a quantitative relationship for threshold estimation on varying conditions. The second topic addressed the relation of the contrast sensitivity function (CSF) to adaptation luminance and specifically its asymptotic behavior at high light levels essential to modern high-luminance displays. Using a custombuilt system, we measured the CSF at relatively high luminance levels and spatial frequency range, integrating our dataset to the existing research. We found a gradual transition among the linear to DeVries-Rose to Weber regions with steeper slopes for higher frequencies and lower luminance. A further decreasing region was located at low to intermediate frequencies. Following this construct, we adopted a model consisting of central elements in the visual signal processing and proposed an eight-parameter form for the CSF in the luminance domain. The final topic addressed the effects of frame rate on distortion acceptance and its impact on visual discomfort during regular display use. We assessed the perceived symptoms, preference, and task performance under varying conditions. The measurements indicated that for nondemanding everyday tasks, the frame rate could be reasonably reduced without severe effects on the observer; however, this tolerance diminished under more dynamic content. A potential association of discomfort with the blinking activity was also discussedThe European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreement No 676401, European Training Network on Full Parallax Imaging and Huawei Technologies Co., Lt

    Engineering Data Compendium. Human Perception and Performance, Volume 1

    Get PDF
    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses
    corecore