152,741 research outputs found

    Behavioral models of digital IC ports from measured transient waveforms

    Get PDF
    This paper addresses the behavioral modeling of output ports of digital integrated circuits via the identification of nonlinear parametric models. The aim of the approach is to produce models for signal integrity (SI) simulation directly from the measured transient responses of the devices. The modeling process is thoroughly described and an experimental demonstration of its feasibility is give

    Principles of Modeling in Information Communication Systems and Networks

    Get PDF
    The authors present in this entry chapter the basic rubrics of models, modeling, and simulation, an un- derstanding of which is indispensible for the comprehension of subsequent chapters of this text on the all-important topic of modeling and simulation in Information Communication Systems and Networks (ICSN). A good example is the case of analyzing simulation results of traffic models as a tool for investigat- ing network behavioral pattarns as it affects the transmitted content (Atayero, et al., 2013). The various classifications of models are discussed, for example classification based on the degree of semblance to the original object (i.e. isomorphism). Various fundamental terminologies without the knowledge of which the concepts and models and modeling cannot be properly understood are explained. Model stuctures are highlighted and discussed. The methodological basis of formalizing complex system structures is presented. The concept of componential approach to modeling is presented and the necessary stages of mathematical model formation are examined and explained. The chapter concludes with a presentation of the concept of simulation vis-Ă -vis information communication systems and networks

    An Application of Volterra Series to IC Buffer Models

    Get PDF
    International audienceThis paper presents a Volterra-based method of behavioral modeling for the I/O buffers of digital ICs. While this technique brings a slight improvement in accuracy over previous ones, its main strength is a greater degree of generality. With a modeling approach less dependent on the nature of the devices and more easily extendable to include the effects of multiple inputs one may hope better meet the challenges of advancing technology. The proposed models can be obtained from device port transient responses only and can be easily implemented in any simulation environment, including SPICE-based circuit description software. Two illustrative examples conclude the paper

    State maps for linear systems

    No full text
    Modeling of physical systems consists of writing the equations describing a phenomenon and yields as a result a set of differential-algebraic equations. As such, state-space models are not a natural starting point for modeling, while they have utmost importance in the simulation and control phase. The paper addresses the problem of computing state variables for systems of linear differential-algebraic equations of various forms. The point of view from which the problem is considered is the behavioral one, as put forward in [J. C. Willems, Automatica J. IFAC, 22 (1986), pp. 561–580; DynamicsReported,2(1989),pp.171–269;IEEETrans.Automat.Control,36(1991),pp. 259–294]

    Cognitive modeling of social behaviors

    Get PDF
    To understand both individual cognition and collective activity, perhaps the greatest opportunity today is to integrate the cognitive modeling approach (which stresses how beliefs are formed and drive behavior) with social studies (which stress how relationships and informal practices drive behavior). The crucial insight is that norms are conceptualized in the individual mind as ways of carrying out activities. This requires for the psychologist a shift from only modeling goals and tasks —why people do what they do—to modeling behavioral patterns—what people do—as they are engaged in purposeful activities. Instead of a model that exclusively deduces actions from goals, behaviors are also, if not primarily, driven by broader patterns of chronological and located activities (akin to scripts). To illustrate these ideas, this article presents an extract from a Brahms simulation of the Flashline Mars Arctic Research Station (FMARS), in which a crew of six people are living and working for a week, physically simulating a Mars surface mission. The example focuses on the simulation of a planning meeting, showing how physiological constraints (e.g., hunger, fatigue), facilities (e.g., the habitat’s layout) and group decision making interact. Methods are described for constructing such a model of practice, from video and first-hand observation, and how this modeling approach changes how one relates goals, knowledge, and cognitive architecture. The resulting simulation model is a powerful complement to task analysis and knowledge-based simulations of reasoning, with many practical applications for work system design, operations management, and training

    Probabilistic models of individual and collective animal behavior

    Get PDF
    Recent developments in automated tracking allow uninterrupted, high-resolution recording of animal trajectories, sometimes coupled with the identification of stereotyped changes of body pose or other behaviors of interest. Analysis and interpretation of such data represents a challenge: the timing of animal behaviors may be stochastic and modulated by kinematic variables, by the interaction with the environment or with the conspecifics within the animal group, and dependent on internal cognitive or behavioral state of the individual. Existing models for collective motion typically fail to incorporate the discrete, stochastic, and internal-state-dependent aspects of behavior, while models focusing on individual animal behavior typically ignore the spatial aspects of the problem. Here we propose a probabilistic modeling framework to address this gap. Each animal can switch stochastically between different behavioral states, with each state resulting in a possibly different law of motion through space. Switching rates for behavioral transitions can depend in a very general way, which we seek to identify from data, on the effects of the environment as well as the interaction between the animals. We represent the switching dynamics as a Generalized Linear Model and show that: (i) forward simulation of multiple interacting animals is possible using a variant of the Gillespie's Stochastic Simulation Algorithm; (ii) formulated properly, the maximum likelihood inference of switching rate functions is tractably solvable by gradient descent; (iii) model selection can be used to identify factors that modulate behavioral state switching and to appropriately adjust model complexity to data. To illustrate our framework, we apply it to two synthetic models of animal motion and to real zebrafish tracking data.Comment: 26 pages, 11 figure
    • …
    corecore