979 research outputs found

    The Art of Fault Injection

    Get PDF
    Classical greek philosopher considered the foremost virtues to be temperance, justice, courage, and prudence. In this paper we relate these cardinal virtues to the correct methodological approaches that researchers should follow when setting up a fault injection experiment. With this work we try to understand where the "straightforward pathway" lies, in order to highlight those common methodological errors that deeply influence the coherency and the meaningfulness of fault injection experiments. Fault injection is like an art, where the success of the experiments depends on a very delicate balance between modeling, creativity, statistics, and patience

    Automated Synthesis of SEU Tolerant Architectures from OO Descriptions

    Get PDF
    SEU faults are a well-known problem in aerospace environment but recently their relevance grew up also at ground level in commodity applications coupled, in this frame, with strong economic constraints in terms of costs reduction. On the other hand, latest hardware description languages and synthesis tools allow reducing the boundary between software and hardware domains making the high-level descriptions of hardware components very similar to software programs. Moving from these considerations, the present paper analyses the possibility of reusing Software Implemented Hardware Fault Tolerance (SIHFT) techniques, typically exploited in micro-processor based systems, to design SEU tolerant architectures. The main characteristics of SIHFT techniques have been examined as well as how they have to be modified to be compatible with the synthesis flow. A complete environment is provided to automate the design instrumentation using the proposed techniques, and to perform fault injection experiments both at behavioural and gate level. Preliminary results presented in this paper show the effectiveness of the approach in terms of reliability improvement and reduced design effort

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    RT-level fast fault simulator

    Get PDF
    In this paper a new fast fault simulation technique is presented for calculation of fault propagation through HLPs (High Level Primitives). ROTDDs (Reduced Ordered Ternary Decision Diagrams) are used to describe HLP modules. The technique is implemented in the HTDD RT-level fault simulator. The simulator is evaluated with some ITC99 benchmarks. A hypothesis is proved that a test set coverage of physical failures can be anticipated with high accuracy when RTL fault model takes into account optimization strategies that are used in CAE system applied
    • …
    corecore