257 research outputs found

    Aerospace Medicine and Biology: a Continuing Bibliography with Indexes (supplement 330)

    Get PDF
    This bibliography lists 156 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during November 1989. Subject coverage includes: aerospace medicine and psychology, life support system and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 356)

    Get PDF
    This bibliography lists 192 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during November 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 287)

    Get PDF
    This bibliography lists 346 reports, articles and other documents introduced into the NASA scientific and technical information system in July 1986

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 358)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 346 through 357 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes: subject, personal author, corporate source, foreign technology, contract number, report number and accession number

    Data efficiency in imitation learning with a focus on object manipulation

    Get PDF
    Imitation is a natural human behaviour that helps us learn new skills. Modelling this behaviour in robots, however, has many challenges. This thesis investigates the challenge of handling the expert demonstrations in an efficient way, so as to minimise the number of demonstrations required for robots to learn. To achieve this, it focuses on demonstration data efficiency at various steps of the imitation process. Specifically, it presents new methodologies that offer ways to acquire, augment and combine demonstrations in order to improve the overall imitation process. Firstly, the thesis explores an inexpensive and non-intrusive way of acquiring dexterous human demonstrations. Human hand actions are quite complex, especially when they involve object manipulation. The proposed framework tackles this by using a camera to capture the hand information and then retargeting it to a dexterous hand model. It does this by combining inverse kinematics with stochastic optimisation. The demonstrations collected with this framework can then be used in the imitation process. Secondly, the thesis presents a novel way to apply data augmentation to demonstrations. The main difficulty of augmenting demonstrations is that their trajectorial nature can make them unsuccessful. Whilst previous works require additional knowledge about the task or demonstrations to achieve this, this method performs augmentation automatically. To do this, it introduces a correction network that corrects the augmentations based on the distribution of the original experts. Lastly, the thesis investigates data efficiency in a multi-task scenario where it additionally proposes a data combination method. Its aim is to automatically divide a set of tasks into sub-behaviours. Contrary to previous works, it does this without any additional knowledge about the tasks. To achieve this, it uses both task-specific and shareable modules. This minimises negative transfer and allows for the method to be applied to various task sets with different commonalities.Open Acces

    Deep Reinforcement Learning Approaches for Technology Enhanced Learning

    Get PDF
    Artificial Intelligence (AI) has advanced significantly in recent years, transforming various industries and domains. Its ability to extract patterns and insights from large volumes of data has revolutionised areas such as image recognition, natural language processing, and autonomous systems. As AI systems become increasingly integrated into daily human life, there is a growing need for meaningful collaboration and mutual engagement between humans and AI, known as Human-AI Collaboration. This collaboration involves combining AI with human workflows to achieve shared objectives. In the current educational landscape, the integration of AI methods in Technology Enhanced Learning (TEL) has become crucial for providing high-quality education and facilitating lifelong learning. Human-AI Collaboration also plays a vital role in the field of Technology Enhanced Learning (TEL), particularly in Intelligent Tutoring Systems (ITS). The COVID-19 pandemic has further emphasised the need for effective educational technologies to support remote learning and bridge the gap between traditional classrooms and online platforms. To maximise the performance of ITS while minimising the input and interaction required from students, it is essential to design collaborative systems that effectively leverage the capabilities of AI and foster effective collaboration between students and ITS. However, there are several challenges that need to be addressed in this context. One challenge is the lack of clear guidance on designing and building user-friendly systems that facilitate collaboration between humans and AI. This challenge is relevant not only to education researchers but also to Human-Computer Interaction (HCI) researchers and developers. Another challenge is the scarcity of interaction data in the early stages of ITS development, which hampers the accurate modelling of students' knowledge states and learning trajectories, known as the cold start problem. Moreover, the effectiveness of Intelligent Tutoring Systems (ITS) in delivering personalised instruction is hindered by the limitations of existing Knowledge Tracing (KT) models, which often struggle to provide accurate predictions. Therefore, addressing these challenges is crucial for enhancing the collaborative process between humans and AI in the development of ITS. This thesis aims to address these challenges and improve the collaborative process between students and ITS in TEL. It proposes innovative approaches to generate simulated student behavioural data and enhance the performance of KT models. The thesis starts with a comprehensive survey of human-AI collaborative systems, identifying key challenges and opportunities. It then presents a structured framework for the student-ITS collaborative process, providing insights into designing user-friendly and efficient systems. To overcome the challenge of data scarcity in ITS development, the thesis proposes two student modelling approaches: Sim-GAIL and SimStu. SimStu leverages a deep learning method, the Decision Transformer, to simulate student interactions and enhance ITS training. Sim-GAIL utilises a reinforcement learning method, Generative Adversarial Imitation Learning (GAIL), to generate high-fidelity and diverse simulated student behavioural data, addressing the cold start problem in ITS training. Furthermore, the thesis focuses on improving the performance of KT models. It introduces the MLFBKT model, which integrates multiple features and mines latent relations in student interaction data, aiming to improve the accuracy and efficiency of KT models. Additionally, the thesis proposes the LBKT model, which combines the strengths of the BERT model and LSTM to process long sequence data in KT models effectively. Overall, this thesis contributes to the field of Human-AI collaboration in TEL by addressing key challenges and proposing innovative approaches to enhance ITS training and KT model performance. The findings have the potential to improve the learning experiences and outcomes of students in educational settings

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 385)

    Get PDF
    This bibliography lists 536 reports, articles and other documents introduced into the NASA Scientific and Technical Information System Database. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 319)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 307 through 318 of Aerospace Medicine and Biology: A Continuing Bibliography. Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number

    Aerospace Medicine and Biology: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 319 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1986

    Aerospace Medicine and Biology: A cumulative index to the 1974 issues of a continuing bibliography

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 125 through 136 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes three indexes--subject, personal author, and corporate source
    corecore