8,141 research outputs found

    Strengthening e-banking security using keystroke dynamics

    Get PDF
    This paper investigates keystroke dynamics and its possible use as a tool to prevent or detect fraud in the banking industry. Given that banks are constantly on the lookout for improved methods to address the menace of fraud, the paper sets out to review keystroke dynamics, its advantages, disadvantages and potential for improving the security of e-banking systems. This paper evaluates keystroke dynamics suitability of use for enhancing security in the banking sector. Results from the literature review found that keystroke dynamics can offer impressive accuracy rates for user identification. Low costs of deployment and minimal change to users modus operandi make this technology an attractive investment for banks. The paper goes on to argue that although this behavioural biometric may not be suitable as a primary method of authentication, it can be used as a secondary or tertiary method to complement existing authentication systems

    An investigation of genetic algorithm-based feature selection techniques applied to keystroke dynamics biometrics

    Get PDF
    Due to the continuous use of social networks, users can be vulnerable to online situations such as paedophilia treats. One of the ways to do the investigation of an alleged pedophile is to verify the legitimacy of the genre that it claims. One possible technique to adopt is keystroke dynamics analysis. However, this technique can extract many attributes, causing a negative impact on the accuracy of the classifier due to the presence of redundant and irrelevant attributes. Thus, this work using the wrapper approach in features selection using genetic algorithms and as KNN, SVM and Naive Bayes classifiers. Bringing as best result the SVM classifier with 90% accuracy, identifying what is most suitable for both bases

    Frictionless Authentication Systems: Emerging Trends, Research Challenges and Opportunities

    Get PDF
    Authentication and authorization are critical security layers to protect a wide range of online systems, services and content. However, the increased prevalence of wearable and mobile devices, the expectations of a frictionless experience and the diverse user environments will challenge the way users are authenticated. Consumers demand secure and privacy-aware access from any device, whenever and wherever they are, without any obstacles. This paper reviews emerging trends and challenges with frictionless authentication systems and identifies opportunities for further research related to the enrollment of users, the usability of authentication schemes, as well as security and privacy trade-offs of mobile and wearable continuous authentication systems.Comment: published at the 11th International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2017

    Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentication

    Full text link
    We investigate whether a classifier can continuously authenticate users based on the way they interact with the touchscreen of a smart phone. We propose a set of 30 behavioral touch features that can be extracted from raw touchscreen logs and demonstrate that different users populate distinct subspaces of this feature space. In a systematic experiment designed to test how this behavioral pattern exhibits consistency over time, we collected touch data from users interacting with a smart phone using basic navigation maneuvers, i.e., up-down and left-right scrolling. We propose a classification framework that learns the touch behavior of a user during an enrollment phase and is able to accept or reject the current user by monitoring interaction with the touch screen. The classifier achieves a median equal error rate of 0% for intra-session authentication, 2%-3% for inter-session authentication and below 4% when the authentication test was carried out one week after the enrollment phase. While our experimental findings disqualify this method as a standalone authentication mechanism for long-term authentication, it could be implemented as a means to extend screen-lock time or as a part of a multi-modal biometric authentication system.Comment: to appear at IEEE Transactions on Information Forensics & Security; Download data from http://www.mariofrank.net/touchalytics

    Avatar captcha : telling computers and humans apart via face classification and mouse dynamics.

    Get PDF
    Bots are malicious, automated computer programs that execute malicious scripts and predefined functions on an affected computer. They pose cybersecurity threats and are one of the most sophisticated and common types of cybercrime tools today. They spread viruses, generate spam, steal personal sensitive information, rig online polls and commit other types of online crime and fraud. They sneak into unprotected systems through the Internet by seeking vulnerable entry points. They access the system’s resources like a human user does. Now the question arises how do we counter this? How do we prevent bots and on the other hand allow human users to access the system resources? One solution is by designing a CAPTCHA (Completely Automated Public Turing Tests to tell Computers and Humans Apart), a program that can generate and grade tests that most humans can pass but computers cannot. It is used as a tool to distinguish humans from malicious bots. They are a class of Human Interactive Proofs (HIPs) meant to be easily solvable by humans and economically infeasible for computers. Text CAPTCHAs are very popular and commonly used. For each challenge, they generate a sequence of alphabets by distorting standard fonts, requesting users to identify them and type them out. However, they are vulnerable to character segmentation attacks by bots, English language dependent and are increasingly becoming too complex for people to solve. A solution to this is to design Image CAPTCHAs that use images instead of text and require users to identify certain images to solve the challenges. They are user-friendly and convenient for human users and a much more challenging problem for bots to solve. In today’s Internet world the role of user profiling or user identification has gained a lot of significance. Identity thefts, etc. can be prevented by providing authorized access to resources. To achieve timely response to a security breach frequent user verification is needed. However, this process must be passive, transparent and non-obtrusive. In order for such a system to be practical it must be accurate, efficient and difficult to forge. Behavioral biometric systems are usually less prominent however, they provide numerous and significant advantages over traditional biometric systems. Collection of behavior data is non-obtrusive and cost-effective as it requires no special hardware. While these systems are not unique enough to provide reliable human identification, they have shown to be highly accurate in identity verification. In accomplishing everyday tasks, human beings use different styles, strategies, apply unique skills and knowledge, etc. These define the behavioral traits of the user. Behavioral biometrics attempts to quantify these traits to profile users and establish their identity. Human computer interaction (HCI)-based biometrics comprise of interaction strategies and styles between a human and a computer. These unique user traits are quantified to build profiles for identification. A specific category of HCI-based biometrics is based on recording human interactions with mouse as the input device and is known as Mouse Dynamics. By monitoring the mouse usage activities produced by a user during interaction with the GUI, a unique profile can be created for that user that can help identify him/her. Mouse-based verification approaches do not record sensitive user credentials like usernames and passwords. Thus, they avoid privacy issues. An image CAPTCHA is proposed that incorporates Mouse Dynamics to help fortify it. It displays random images obtained from Yahoo’s Flickr. To solve the challenge the user must identify and select a certain class of images. Two theme-based challenges have been designed. They are Avatar CAPTCHA and Zoo CAPTCHA. The former displays human and avatar faces whereas the latter displays different animal species. In addition to the dynamically selected images, while attempting to solve the CAPTCHA, the way each user interacts with the mouse i.e. mouse clicks, mouse movements, mouse cursor screen co-ordinates, etc. are recorded nonobtrusively at regular time intervals. These recorded mouse movements constitute the Mouse Dynamics Signature (MDS) of the user. This MDS provides an additional secure technique to segregate humans from bots. The security of the CAPTCHA is tested by an adversary executing a mouse bot attempting to solve the CAPTCHA challenges
    • …
    corecore