34,540 research outputs found

    CLOSER: A Collaborative Locality-aware Overlay SERvice

    Get PDF
    Current Peer-to-Peer (P2P) file sharing systems make use of a considerable percentage of Internet Service Providers (ISPs) bandwidth. This paper presents the Collaborative Locality-aware Overlay SERvice (CLOSER), an architecture that aims at lessening the usage of expensive international links by exploiting traffic locality (i.e., a resource is downloaded from the inside of the ISP whenever possible). The paper proves the effectiveness of CLOSER by analysis and simulation, also comparing this architecture with existing solutions for traffic locality in P2P systems. While savings on international links can be attractive for ISPs, it is necessary to offer some features that can be of interest for users to favor a wide adoption of the application. For this reason, CLOSER also introduces a privacy module that may arouse the users' interest and encourage them to switch to the new architectur

    Quantum Monte Carlo for large chemical systems: Implementing efficient strategies for petascale platforms and beyond

    Full text link
    Various strategies to implement efficiently QMC simulations for large chemical systems are presented. These include: i.) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), ii.) the possibility of keeping the memory footprint minimal, iii.) the important enhancement of single-core performance when efficient optimization tools are employed, and iv.) the definition of a universal, dynamic, fault-tolerant, and load-balanced computational framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056 and 1731 electrons). Using 10k-80k computing cores of the Curie machine (GENCI-TGCC-CEA, France) QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible

    I Know Where You are and What You are Sharing: Exploiting P2P Communications to Invade Users' Privacy

    Get PDF
    In this paper, we show how to exploit real-time communication applications to determine the IP address of a targeted user. We focus our study on Skype, although other real-time communication applications may have similar privacy issues. We first design a scheme that calls an identified targeted user inconspicuously to find his IP address, which can be done even if he is behind a NAT. By calling the user periodically, we can then observe the mobility of the user. We show how to scale the scheme to observe the mobility patterns of tens of thousands of users. We also consider the linkability threat, in which the identified user is linked to his Internet usage. We illustrate this threat by combining Skype and BitTorrent to show that it is possible to determine the file-sharing usage of identified users. We devise a scheme based on the identification field of the IP datagrams to verify with high accuracy whether the identified user is participating in specific torrents. We conclude that any Internet user can leverage Skype, and potentially other real-time communication systems, to observe the mobility and file-sharing usage of tens of millions of identified users.Comment: This is the authors' version of the ACM/USENIX Internet Measurement Conference (IMC) 2011 pape

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems

    Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons

    Full text link
    In this review we recapitulate the basic features of the flat-band spin systems and briefly summarize earlier studies in the field. Main emphasis is made on recent developments which include results for both spin and electron flat-band models. In particular, for flat-band spin systems we highlight field-driven phase transitions for frustrated quantum Heisenberg antiferromagnets at low temperatures, chiral flat-band states, as well as the effect of a slight dispersion of a previously strictly flat band due to nonideal lattice geometry. For electronic systems, we discuss the universal low-temperature behavior of several flat-band Hubbard models, the emergence of ground-state ferromagnetism in the square-lattice Tasaki-Hubbard model and the related Pauli-correlated percolation problem, as well as the dispersion-driven ground-state ferromagnetism in flat-band Hubbard systems. Closely related studies and possible experimental realizations of the flat-band physics are also described briefly.Comment: 72 pages, 20 figures, 157 references; accepted for publication in International Journal of Modern Physics
    • 

    corecore