1,465 research outputs found

    Predictive Dynamic Thermal and Power Management for Heterogeneous Mobile Platforms

    Get PDF
    abstract: Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Architecture and Design of Medical Processor Units for Medical Networks

    Full text link
    This paper introduces analogical and deductive methodologies for the design medical processor units (MPUs). From the study of evolution of numerous earlier processors, we derive the basis for the architecture of MPUs. These specialized processors perform unique medical functions encoded as medical operational codes (mopcs). From a pragmatic perspective, MPUs function very close to CPUs. Both processors have unique operation codes that command the hardware to perform a distinct chain of subprocesses upon operands and generate a specific result unique to the opcode and the operand(s). In medical environments, MPU decodes the mopcs and executes a series of medical sub-processes and sends out secondary commands to the medical machine. Whereas operands in a typical computer system are numerical and logical entities, the operands in medical machine are objects such as such as patients, blood samples, tissues, operating rooms, medical staff, medical bills, patient payments, etc. We follow the functional overlap between the two processes and evolve the design of medical computer systems and networks.Comment: 17 page

    Power-Performance Modeling and Adaptive Management of Heterogeneous Mobile Platforms​

    Get PDF
    abstract: Nearly 60% of the world population uses a mobile phone, which is typically powered by a system-on-chip (SoC). While the mobile platform capabilities range widely, responsiveness, long battery life and reliability are common design concerns that are crucial to remain competitive. Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful SoC with numerous other resources, including display, memory, power management IC, battery and wireless modems. Furthermore, the SoC itself is a heterogeneous resource that integrates many processing elements, such as CPU cores, GPU, video, image, and audio processors. Therefore, CPU cores do not dominate the platform power consumption under many application scenarios. Competitive performance requires higher operating frequency, and leads to larger power consumption. In turn, power consumption increases the junction and skin temperatures, which have adverse effects on the device reliability and user experience. As a result, allocating the power budget among the major platform resources and temperature control have become fundamental consideration for mobile platforms. Dynamic thermal and power management algorithms address this problem by putting a subset of the processing elements or shared resources to sleep states, or throttling their frequencies. However, an adhoc approach could easily cripple the performance, if it slows down the performance-critical processing element. Furthermore, mobile platforms run a wide range of applications with time varying workload characteristics, unlike early generations, which supported only limited functionality. As a result, there is a need for adaptive power and performance management approaches that consider the platform as a whole, rather than focusing on a subset. Towards this need, our specific contributions include (a) a framework to dynamically select the Pareto-optimal frequency and active cores for the heterogeneous CPUs, such as ARM big.Little architecture, (b) a dynamic power budgeting approach for allocating optimal power consumption to the CPU and GPU using performance sensitivity models for each PE, (c) an adaptive GPU frame time sensitivity prediction model to aid power management algorithms, and (d) an online learning algorithm that constructs adaptive run-time models for non-stationary workloads.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Dynamic Energy and Thermal Management of Multi-Core Mobile Platforms: A Survey

    Get PDF
    Multi-core mobile platforms are on rise as they enable efficient parallel processing to meet ever-increasing performance requirements. However, since these platforms need to cater for increasingly dynamic workloads, efficient dynamic resource management is desired mainly to enhance the energy and thermal efficiency for better user experience with increased operational time and lifetime of mobile devices. This article provides a survey of dynamic energy and thermal management approaches for multi-core mobile platforms. These approaches do either proactive or reactive management. The upcoming trends and open challenges are also discussed

    System Support For Energy Efficient Mobile Computing

    Get PDF
    Mobile devices are developed rapidly and they have been an integrated part of our daily life. With the blooming of Internet of Things, mobile computing will become more and more important. However, the battery drain problem is a critical issue that hurts user experience. High performance devices require more power support, while the battery capacity only increases 5% per year on average. Researchers are working on kinds of energy saving approaches. For examples, hardware components provide different power state to save idle power; operating systems provide power management APIs to better control power dissipation. However, the system energy efficiency is still low that cannot reach users’ expectation. To improve energy efficiency, we studied how to provide system support for mobile computing in four different aspects. First, we focused on the influence of user behavior on system energy consumption. We monitored and analyzed users’ application usages information. From the results, we built battery prediction model to estimate the battery time based on user behavior and hardware components’ usage. By adjusting user behavior, we can at most double the battery time. To understand why different applications can cause such huge energy difference, we built a power profiler Bugu to figure out where does the power go. Bugu analyzes power and event information for applications, it has high accuracy and low overhead. We analyzed almost 100 mobile applications’ power behavior and several implications are derived to save energy of applications and systems. In addition, to understand the energy behavior of modern hardware architectures, we analyzed the energy consumption and performance of heterogeneous platforms and compared them with homogeneous platforms. The results show that heterogeneous platforms indeed have great potential for energy saving which mostly comes from idle and low workload situations. However, a wrong scheduling decision may cause up to 30% more energy consumption. Scheduling becomes the key point for energy efficient computing. At last, as the increased power density leads to high device temperature, we investigated the thermal management system and developed an ambient temperature aware thermal control policy Falcon. It can save 4.85% total system power and more adaptive in various environments compared with the default approach. Finally, we discussed several potential directions for future research in this field
    • …
    corecore