13,961 research outputs found

    A discrete geometric approach for simulating the dynamics of thin viscous threads

    Full text link
    We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematical constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistency of the discrete model with the classical, smooth equations is established formally in the limit of a vanishing discretization length. The discrete models lends itself naturally to numerical implementation. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous jets in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension

    Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets

    Full text link
    The spinning of slender viscous jets can be described asymptotically by one-dimensional models that consist of systems of partial and ordinary differential equations. Whereas the well-established string models possess only solutions for certain choices of parameters and set-ups, the more sophisticated rod model that can be considered as ϵ\epsilon-regularized string is generally applicable. But containing the slenderness ratio ϵ\epsilon explicitely in the equations complicates the numerical treatment. In this paper we present the first instationary simulations of a rod in a rotational spinning process for arbitrary parameter ranges with free and fixed jet end, for which the hitherto investigations longed. So we close an existing gap in literature. The numerics is based on a finite volume approach with mixed central, up- and down-winded differences, the time integration is performed by stiff accurate Radau methods

    Spectral Dynamics of the Velocity Gradient Field in Restricted Flows

    Full text link
    We study the velocity gradients of the fundamental Eulerian equation, ∂tu+u⋅∇u=F\partial_t u +u\cdot \nabla u=F, which shows up in different contexts dictated by the different modeling of FF's. To this end we utilize a basic description for the spectral dynamics of ∇u\nabla u, expressed in terms of the (possibly complex) eigenvalues, λ=λ(∇u)\lambda=\lambda(\nabla u), which are shown to be governed by the Ricatti-like equation λt+u⋅∇λ+λ2=\lambda_t+u\cdot \nabla\lambda+\lambda^2= . We address the question of the time regularity of four prototype models associated with different forcing FF. Using the spectral dynamics as our essential tool in these investigations, we obtain a simple form of a critical threshold for the linear damping model and we identify the 2D vanishing viscosity limit for the viscous irrotational dusty medium model. Moreover, for the nn-dimensional restricted Euler equations we obtain [n/2]+1[n/2]+1 global invariants, interesting for their own sake, which enable us to precisely characterize the local topology at breakdown time, extending previous studies in the n=3n=3-dimensional case. Finally, as a forth model we introduce the nn-dimensional restricted Euler-Poisson (REP)system, identifying a set of [n/2][n/2] global invariants, which in turn yield (i) sufficient conditions for finite time breakdown, and (ii) characterization of a large class of 2-dimensional initial configurations leading to global smooth solutions. Consequently, the 2D restricted Euler-Poisson equations are shown to admit a critical threshold
    • …
    corecore