231 research outputs found

    45-nm Radiation Hardened Cache Design

    Get PDF
    abstract: Circuits on smaller technology nodes become more vulnerable to radiation-induced upset. Since this is a major problem for electronic circuits used in space applications, designers have a variety of solutions in hand. Radiation hardening by design (RHBD) is an approach, where electronic components are designed to work properly in certain radiation environments without the use of special fabrication processes. This work focuses on the cache design for a high performance microprocessor. The design tries to mitigate radiation effects like SEE, on a commercial foundry 45 nm SOI process. The design has been ported from a previously done cache design at the 90 nm process node. The cache design is a 16 KB, 4 way set associative, write-through design that uses a no-write allocate policy. The cache has been tested to write and read at above 2 GHz at VDD = 0.9 V. Interleaved layout, parity protection, dual redundancy, and checking circuits are used in the design to achieve radiation hardness. High speed is accomplished through the use of dynamic circuits and short wiring routes wherever possible. Gated clocks and optimized wire connections are used to reduce power. Structured methodology is used to build up the entire cache.Dissertation/ThesisM.S. Electrical Engineering 201

    Efficient modular arithmetic units for low power cryptographic applications

    Get PDF
    The demand for high security in energy constrained devices such as mobiles and PDAs is growing rapidly. This leads to the need for efficient design of cryptographic algorithms which offer data integrity, authentication, non-repudiation and confidentiality of the encrypted data and communication channels. The public key cryptography is an ideal choice for data integrity, authentication and non-repudiation whereas the private key cryptography ensures the confidentiality of the data transmitted. The latter has an extremely high encryption speed but it has certain limitations which make it unsuitable for use in certain applications. Numerous public key cryptographic algorithms are available in the literature which comprise modular arithmetic modules such as modular addition, multiplication, inversion and exponentiation. Recently, numerous cryptographic algorithms have been proposed based on modular arithmetic which are scalable, do word based operations and efficient in various aspects. The modular arithmetic modules play a crucial role in the overall performance of the cryptographic processor. Hence, better results can be obtained by designing efficient arithmetic modules such as modular addition, multiplication, exponentiation and squaring. This thesis is organized into three papers, describes the efficient implementation of modular arithmetic units, application of these modules in International Data Encryption Algorithm (IDEA). Second paper describes the IDEA algorithm implementation using the existing techniques and using the proposed efficient modular units. The third paper describes the fault tolerant design of a modular unit which has online self-checking capability --Abstract, page iv

    A Comprehensive Fault Model for Concurrent Error Detection in MOS Circuits

    Get PDF
    Naval Electronics Sys. Comm. and Office of Naval Research / N00039-80-C-0556Ope

    5G NR-๋ฐด๋“œ ๋ฌด์„  ์ฃผํŒŒ์ˆ˜ ์†ก์ˆ˜์‹ ๊ธฐ์˜ ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ๊น€์žฌํ•˜.๋„๋ž˜ํ•œ ์ดˆ์—ฐ๊ฒฐ์‹œ๋Œ€์—์„œ๋Š” ์Šค๋งˆํŠธํฐ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ์‚ฌ๋ฌผ ์ธํ„ฐ๋„ท ๋””๋ฐ”์ด์Šค๋“ค์ด 5์„ธ๋Œ€ ์ด๋™ํ†ต์‹  ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•˜๋ฉด์„œ, ๋Š˜์–ด๋‚œ ๋ฐ์ดํ„ฐ๋Ÿ‰๊ณผ ํŠธ๋ž˜ํ”ฝ์„ ๊ฐ๋‹นํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ๋Œ€์—ญ์˜ ์‚ฌ์šฉ์ด ํ•„์ˆ˜์ ์ผ ๊ฒƒ์ด๋‹ค. ์‹œ์Šคํ…œ์ด ๋ณด๋‹ค ๋Œ€์šฉ๋Ÿ‰ํ™” ๊ทธ๋ฆฌ๊ณ  ๊ด‘๋Œ€์—ญํ™” ๋จ์— ๋”ฐ๋ผ, ํ†ต์‹  ๊ทœ์•ฝ์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด, ์ ์ฐจ ๊ฑฐ๋Œ€ํ•œ ๋””์ง€ํ„ธ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๋ฐ ์‹ ํ˜ธ์ฒ˜๋ฆฌ ๋กœ์ง์ด, ๋ฌด์„  ํ†ต์‹  ์ „๋‹จ๋ถ€ ์นฉ์— ํ•จ๊ป˜ ์ง‘์ ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฉ€ํ‹ฐ-๋„๋ฉ”์ธ์˜ ์‹ ํ˜ธ(์•„๋‚ ๋กœ๊ทธ/๋””์ง€ํ„ธ/๋ฌด์„ ํ†ต์‹  ์‹ ํ˜ธ)๊ฐ€ ๋ณต์žกํ•˜๊ฒŒ ํ˜ผ์„ฑ๋œ ๋ฌด์„ ํ†ต์‹  ์ง‘์ ํšŒ๋กœ ์นฉ์„, ์งง์€ ๊ฐœ๋ฐœ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ถฉ๋ถ„ํžˆ ๊ฒ€์ฆํ•˜๊ธฐ์—” ์–ด๋ ค์›€์ด ๋”ฐ๋ฅธ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ํ˜ผ์„ฑ ์‹ ํ˜ธ ์‹œ์Šคํ…œ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”, ํ•˜์œ„ ์‹œ์Šคํ…œ์„ ๋ชจ๋‘ ํฌํ•จํ•ด์„œ ์‹œ๊ฐ„ ๋„๋ฉ”์ธ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋ฅผ ์œ„ํ•œ ์ŠคํŒŒ์ด์Šค์™€ ์ŠคํŒŒ์ด์Šค-ํ•˜๋“œ์›จ์–ด ๊ธฐ์ˆ  ์–ธ์–ด์˜ co-์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ์ง€๋‚˜์น˜๊ฒŒ ๋Š๋ฆฌ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ฉ€ํ‹ฐ-๋„๋ฉ”์ธ์˜ ์‹ ํ˜ธ๋ฅผ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ•๊ณผ, ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์˜ ๊ฒ€์ฆ ์™„์„ฑ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ์ค„ ์žˆ๋Š” ๊ฒ€์ฆ ๊ธฐ์ˆ ์ด ๋ชจ๋‘ ์š”๊ตฌ๋œ๋‹ค. ํ˜ผ์„ฑ ์‹œ์Šคํ…œ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”, ์•„๋‚ ๋กœ๊ทธ์™€ ๋ฌด์„  ํ†ต์‹  ๋ธ”๋ก๋“ค์„ ์‹œ์Šคํ…œ ๋ฒ ๋ฆด๋กœ๊ทธ ์ƒ์—์„œ ๊ตฌํ˜„๋œ ํ•จ์ˆ˜์  ๋ชจ๋ธ๋กœ ๋Œ€์ฒดํ•˜๊ณ , ๋””์ง€ํ„ธ ๋ธ”๋ก๋“ค๊ณผ ํ•จ๊ป˜ ํ•˜๋‚˜์˜ ๋””์ง€ํ„ธ ํ”Œ๋žซํผ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” ๊ฒƒ์ด ํšจ๊ณผ์ ์ด๋‹ค. ์‹ค์ œ ์„ค๊ณ„ํ•  ๋•Œ, ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์—๋Ÿฌ๋“ค์€, ์—ฐ๊ฒฐ ์˜ค๋ฅ˜, ๋ถ€ํ˜ธ ์˜ค๋ฅ˜, ์‹ ํ˜ธ ์ˆœ์„œ ์˜ค๋ฅ˜, ํ˜น์€ ์ž˜๋ชป๋œ ํŒŒ์›Œ ๋„๋ฉ”์ธ๊ณผ์˜ ์—ฐ๊ฒฐ๊ณผ ๊ฐ™์ด ์‚ฌ์†Œํ•œ ์˜ค๋ฅ˜๋“ค์ด๋‹ค. ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด, ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๋Š” ํŠธ๋žœ์ง€์Šคํ„ฐ-๋ ˆ๋ฒจ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ๋ณด๋‹ค๋Š”, ์•„๋‚ ๋กœ๊ทธ ์ŠคํŒŒ์ด์Šค ๋ชจ๋ธ๋“ค์„ ์‹œ์Šคํ…œ ๋ฒ ๋ฆด๋กœ๊ทธ ๋ชจ๋ธ๋“ค๋กœ ๋Œ€์ฒดํ•˜๊ณ , ๋ณด๋‹ค ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋น ๋ฅด๊ฒŒ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๊ฒ€์ฆ ์™„์„ฑ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ์ ํ•ฉํ•˜๋‹ค. ๊ทธ๋Ÿผ์—๋„, ์ง€๋‚˜์น˜๊ฒŒ ๋‹จ์ˆœํ•œ ์„ ํ˜• ๋ชจ๋ธ์ด๋‚˜, ์ค‘์š”ํ•œ ํšŒ๋กœ ํŠน์„ฑ์ด ๋น ์ง„ ๋ชจ๋ธ๋กœ๋Š” ์›ํ•˜๋Š” ์ˆ˜์ค€์˜ ๊ฒ€์ฆ์ด ๋ถˆ๊ฐ€๋Šฅํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ง์ ‘ ๋ณ€์กฐ ๊ตฌ์กฐ์˜ ๋ฌด์„ ํ†ต์‹  ์†ก์ˆ˜์‹ ๊ธฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์ด์ƒ ํšจ๊ณผ, ์ €์ „๋ ฅ ๋™์ž‘์„ ํ•˜๋ฉด์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์„ ํ˜• ํšจ๊ณผ, ๊ทธ๋ฆฌ๊ณ  ํ”ํžˆ ๋ฉ”๋ชจ๋ฆฌ ํšจ๊ณผ๋Š” ๋ชจ๋ธ์— ํšจ๊ณผ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•ด ์ฃผ์–ด์•ผ๋งŒ, ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์—์„œ์˜ ๊ฒ€์ฆ, ์„ฑ๋Šฅ ์˜ˆ์ธก ๋“ฑ์˜ ๊ฒ€์ฆ์„ ์˜๋ฏธ ์žˆ๊ฒŒ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌธ์ œ๋Š” ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์€ ํ›จ์”ฌ ๋ณต์žกํ•œ ์‹์œผ๋กœ ํ‘œํ˜„๋˜๋ฉฐ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ ์—ฐ์‚ฐ๋Ÿ‰๋„ ํฌ๊ฒŒ ๋Š˜์–ด๋‚˜๊ธฐ ๋•Œ๋ฌธ์—, ๋น„์„ ํ˜• ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•˜๊ธฐ๊ฐ€ ์‰ฝ์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋ธ์ด ๋น„์ด์ƒ์„ฑ๋“ค์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๋ฉด์„œ๋„ ํšจ๊ณผ์ ์ธ ๊ฒ€์ฆ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ชจ๋ธ๋ง/์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐฉ๋ฒ• ์—ญ์‹œ ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š”, ๋ฌด์„ ํ†ต์‹  ์†ก์ˆ˜์‹ ๊ธฐ ์ง‘์ ํšŒ๋กœ ์ „์ฒด์˜ ๋ชจ์‚ฌ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ชจ๋ธ์€ ๋ˆ„์„ค ์‹ ํ˜ธ์™€ ์‹ ํ˜ธ ๊ฐ„ ๋ถˆ์ผ์น˜์— ์˜ํ•œ ๋น„-์ด์ƒ์ ์ธ ํšจ๊ณผ๋ฅผ ์—‘์Šค๋ชจ๋ธ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•ด ๋ฐ˜์˜ํ•˜์˜€๊ณ , ๋น„์„ ํ˜•์„ฑ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ํšจ๊ณผ๋ฅผ ๋ณผํ…Œ๋ผ-์„ญ๋™๋ฒ•์„ ํ™œ์šฉํ•ด ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ชจ๋ธ์€ ๋‹ค์–‘ํ•œ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ๊ณผ ๋™์ž‘ ๋ชจ๋“œ๋ฅผ ๊ฒ€์ฆํ•˜๋Š”๋ฐ, ๊ธฐ์กด ๋“ฑ๊ฐ€ ๋ฒ ์ด์Šค๋ฐด๋“œ ๋ชจ๋ธ๋ณด๋‹ค 30~1800๋ฐฐ ๋น ๋ฅด๊ฒŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ๋น„์ด์ƒ ํšจ๊ณผ์— ๋Œ€ํ•ด, ํ†ต์‹  ์„ฑ๋Šฅ๋“ค(์‹ฌ๋ณผ์˜ ์˜ค๋ฅ˜ ๋ฒกํ„ฐ์˜ ํฌ๊ธฐ, ์ธ์ ‘ ์ฑ„๋„์˜ ํŒŒ์›Œ ๊ทธ๋ฆฌ๊ณ  ๋น„ํŠธ ์—๋Ÿฌ)์„ ํ‰๊ฐ€ ๊ฐ€๋Šฅํ–ˆ๋‹ค. ๋‚˜์•„๊ฐ€, ์•„๋‚ ๋กœ๊ทธ ๊ฒ€์‚ฌ๊ธฐ๋ฅผ ํ™œ์šฉํ•œ ๊ธฐ๋Šฅ ๊ฒ€์ฆ๋ฒ•๊ณผ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ปค๋ฒ„๋ฆฌ์ง€ ๋ถ„์„๋ฒ•์„ ์ ์šฉํ•˜์—ฌ, ์‹œ์Šคํ…œ-๋ ˆ๋ฒจ ๊ฒ€์ฆ์˜ ์™„์„ฑ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๋ฌด์„ ํ†ต์‹  ์ง‘์ ํšŒ๋กœ ๋ชจ๋ธ์— ๋‹ค์–‘ํ•œ ๋””์ž์ธ/ํŒŒ๋ผ๋ฏธํ„ฐ ์˜ค๋ฅ˜๋ฅผ ์ฃผ์ž…ํ•˜๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋™์•ˆ ๊ฒ€์‚ฌ๊ธฐ๊ฐ€ ์ฐพ์€ ์—๋Ÿฌ์˜ ๊ฐœ์ˆ˜์™€ ์ปค๋ฒ„๋ฆฌ์ง€ ๊ฒฐ๊ณผ๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๋ณด์˜€๋‹ค.In mobile RF transceiver systems, the large number of digital circuits employed to compensate or calibrate the non-idealities of the RF circuits call for models that can work within the digital verification platform, such as SystemVerilog. While baseband-equivalent real-number models (RNMs) are the current state-of-the-art for modeling RF transceivers in SystemVerilog, their simulation speeds and accuracy are not adequate predicting performance degradation. Since, its signals can only model the frequency components near the carrier frequency but not the DC offsets or high-order harmonic effects arising due to nonlinearities. Therefore, the growing impacts of nonlinearities call for nonlinear modeling of their key components to predict the overall system's performance. This dissertation presents the models for a multi-standard, direct-conversion RF transceiver for evaluating its system-level performance and verifying its digital controllers. Also, this work demonstrates the Volterra series model for the nonlinear analysis of a low-noise amplifier circuit in SystemVerilog, leveraging the functional expression and event-driven simulation capability of XMODEL. The simulation results indicate that the presented models, including the digital configuration/calibration logic for the 5G sub-6GHz-band and mmWave-band transceiver, can deliver 30โ€“1800ร— higher speeds than the baseband-equivalent RNMs while estimating the quadrature amplitude modulation signal constellation and error vector magnitude in the presence of non-idealities such as nonlinearities, DC offsets, and I/Q imbalances. In addition, it implements functionality checkers and parameter coverage analysis to advance the completeness of system-level verification of the RF transceivers model.Chapter 1. Introduction 1 1.1 Design and Verification Flow . 1.2 5G NR Band RF Transceiver IC . 1.3 Baseband-Equivalent and Passband Modeling . 1.4 Thesis Organization . Chapter 2. Modeling and Simulation of RF Transceiver 11 2.1 Direct Conversion RF Transceiver . 2.2 Proposed Transceiver Models . 2.3 System and Simulation Performance . Chapter 3. Nonlinear RF System Modeling 28 3.1 Volterra / Perturbation Method . 3.2 Low Noise Amplifier Example . 3.3 Nonlinearity Analysis . Chapter 4. Coverage Analysis and Functional Verification 42 4.1 Model Parameter Coverage Analysis . 4.2 Self-Checking Testbench . Chapter 5. Conclusion 54 Appendix 55 A.1 Trigonometric Equation for Non-Ideal Effects . A.2 RNM Baseband Equivalent Modeling . A.3 Parameter Coverage Analysis . A.4 List of Models . Bibliography 63 Abstract in Korean 66์„

    LSI/VLSI design for testability analysis and general approach

    Get PDF
    The incorporation of testability characteristics into large scale digital design is not only necessary for, but also pertinent to effective device testing and enhancement of device reliability. There are at least three major DFT techniques, namely, the self checking, the LSSD, and the partitioning techniques, each of which can be incorporated into a logic design to achieve a specific set of testability and reliability requirements. Detailed analysis of the design theory, implementation, fault coverage, hardware requirements, application limitations, etc., of each of these techniques are also presented

    Dependable Computing on Inexact Hardware through Anomaly Detection.

    Full text link
    Reliability of transistors is on the decline as transistors continue to shrink in size. Aggressive voltage scaling is making the problem even worse. Scaled-down transistors are more susceptible to transient faults as well as permanent in-field hardware failures. In order to continue to reap the benefits of technology scaling, it has become imperative to tackle the challenges risen due to the decreasing reliability of devices for the mainstream commodity market. Along with the worsening reliability, achieving energy efficiency and performance improvement by scaling is increasingly providing diminishing marginal returns. More than any other time in history, the semiconductor industry faces the crossroad of unreliability and the need to improve energy efficiency. These challenges of technology scaling can be tackled by categorizing the target applications in the following two categories: traditional applications that have relatively strict correctness requirement on outputs and emerging class of soft applications, from various domains such as multimedia, machine learning, and computer vision, that are inherently inaccuracy tolerant to a certain degree. Traditional applications can be protected against hardware failures by low-cost detection and protection methods while soft applications can trade off quality of outputs to achieve better performance or energy efficiency. For traditional applications, I propose an efficient, software-only application analysis and transformation solution to detect data and control flow transient faults. The intelligence of the data flow solution lies in the use of dynamic application information such as control flow, memory and value profiling. The control flow protection technique achieves its efficiency by simplifying signature calculations in each basic block and by performing checking at a coarse-grain level. For soft applications, I develop a quality control technique. The quality control technique employs continuous, light-weight checkers to ensure that the approximation is controlled and application output is acceptable. Overall, I show that the use of low-cost checkers to produce dependable results on commodity systems---constructed from inexact hardware components---is efficient and practical.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113341/1/dskhudia_1.pd

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    Robust design of deep-submicron digital circuits

    Get PDF
    Avec l'augmentation de la probabilitรฉ de fautes dans les circuits numรฉriques, les systรจmes dรฉveloppรฉs pour les environnements critiques comme les centrales nuclรฉaires, les avions et les applications spatiales doivent รชtre certifies selon des normes industrielles. Cette thรจse est un rรฉsultat d'une cooperation CIFRE entre l'entreprise ร‰lectricitรฉ de France (EDF) R&D et Tรฉlรฉcom Paristech. EDF est l'un des plus gros producteurs d'รฉnergie au monde et possรจde de nombreuses centrales nuclรฉaires. Les systรจmes de contrรดle-commande utilisรฉ dans les centrales sont basรฉs sur des dispositifs รฉlectroniques, qui doivent รชtre certifiรฉs selon des normes industrielles comme la CEI 62566, la CEI 60987 et la CEI 61513 ร  cause de la criticitรฉ de l'environnement nuclรฉaire. En particulier, l'utilisation des dispositifs programmables comme les FPGAs peut รชtre considรฉrรฉe comme un dรฉfi du fait que la fonctionnalitรฉ du dispositif est dรฉfinie par le concepteur seulement aprรจs sa conception physique. Le travail prรฉsentรฉ dans ce mรฉmoire porte sur la conception de nouvelles mรฉthodes d'analyse de la fiabilitรฉ aussi bien que des mรฉthodes d'amรฉlioration de la fiabilitรฉ d'un circuit numรฉrique.The design of circuits to operate at critical environments, such as those used in control-command systems at nuclear power plants, is becoming a great challenge with the technology scaling. These circuits have to pass through a number of tests and analysis procedures in order to be qualified to operate. In case of nuclear power plants, safety is considered as a very high priority constraint, and circuits designed to operate under such critical environment must be in accordance with several technical standards such as the IEC 62566, the IEC 60987, and the IEC 61513. In such standards, reliability is treated as a main consideration, and methods to analyze and improve the circuit reliability are highly required. The present dissertation introduces some methods to analyze and to improve the reliability of circuits in order to facilitate their qualification according to the aforementioned technical standards. Concerning reliability analysis, we first present a fault-injection based tool used to assess the reliability of digital circuits. Next, we introduce a method to evaluate the reliability of circuits taking into account the ability of a given application to tolerate errors. Concerning reliability improvement techniques, first two different strategies to selectively harden a circuit are proposed. Finally, a method to automatically partition a TMR design based on a given reliability requirement is introduced.PARIS-Tรฉlรฉcom ParisTech (751132302) / SudocSudocFranceF
    • โ€ฆ
    corecore