52 research outputs found

    A comparison of fuzzy approaches for training a humanoid robotic football player

    Get PDF
    © 2017 IEEE. Fuzzy Systems are an efficient instrument to create efficient and transparent models of the behavior of complex dynamic systems such as autonomous humanoid robots. The human interpretability of these models is particularly significant when it is applied to the cognitive robotics research, in which the models are designed to study the behaviors and produce a better understanding of the underlying processes of the cognitive development. From this research point of view, this paper presents a comparative study on training fuzzy based system to control the autonomous navigation and task execution of a humanoid robot controlled in a soccer scenario. Examples of sensor data are collected via a computer simulation, then we compare the performance of several fuzzy algorithms able to learn and optimize the humanoid robot's actions from the data

    Moving object detection for interception by a humanoid robot

    Get PDF
    Interception of a moving object with an autonomous robot is an important problem in robotics. It has various application areas, such as in an industrial setting where products on a conveyor would be picked up by a robotic arm, in the military to halt intruders, in robotic soccer (where the robots try to get to the moving ball and try to block an opponent\u27s attempt to pass the ball), and in other challenging situations. Interception, in and of itself, is a complex task that demands a system with target recognition capability, proper navigation and actuation toward the moving target. There are numerous techniques for intercepting stationary targets and targets that move along a certain trajectory (linear, circular, and parabolic). However, much less research has been done for objects moving with an unknown and unpredictable trajectory, changing scale as well and having a different view point, where, additionally, the reference frame of the robot vision system is also dynamic. This study aims to find methods for object detection and tracking using vision system applicable for autonomous interception of a moving humanoid robot target by another humanoid robot. With the use of the implemented vision system, a robot is able to detect, track and intercept in a dynamic environment the moving target, taking into account the unique specifications of a humanoid robot, such as the kinematics of walking. The vision system combined object detection based on Haar/LBP feature classifiers trained on Boosted Cascades\u27\u27 and target contour tracking using optical flow techniques. The constant updates during navigation helped to intercept the object moving with unpredicted trajectory

    Systematic literature review of realistic simulators applied in educational robotics context

    Get PDF
    This paper presents a systematic literature review (SLR) about realistic simulators that can be applied in an educational robotics context. These simulators must include the simulation of actuators and sensors, the ability to simulate robots and their environment. During this systematic review of the literature, 559 articles were extracted from six different databases using the Population, Intervention, Comparison, Outcomes, Context (PICOC) method. After the selection process, 50 selected articles were included in this review. Several simulators were found and their features were also analyzed. As a result of this process, four realistic simulators were applied in the review’s referred context for two main reasons. The first reason is that these simulators have high fidelity in the robots’ visual modeling due to the 3D rendering engines and the second reason is because they apply physics engines, allowing the robot’s interaction with the environment.info:eu-repo/semantics/publishedVersio

    Designing a minimal reactive goalie for the RoboCup SPL

    Get PDF
    This paper presents the basic design and implementation of a goalkeeper made according to the regulations of the two-legged Standard Platform League of the RoboCup Federation. The paper describes the perceptive schemas created using the architecture of the TeamChaos-URJC team as well as the action schemes designed to create a minimal reactive goalie. This player was tested in the 2009 German Open international competition. The results obtained there are analyzed and the future works derived from that analysis are presente

    Development of a Locomotion and Balancing Strategy for Humanoid Robots

    Get PDF
    The locomotion ability and high mobility are the most distinguished features of humanoid robots. Due to the non-linear dynamics of walking, developing and controlling the locomotion of humanoid robots is a challenging task. In this thesis, we study and develop a walking engine for the humanoid robot, NAO, which is the official robotic platform used in the RoboCup Spl. Aldebaran Robotics, the manufacturing company of NAO provides a walking module that has disadvantages, such as being a black box that does not provide control of the gait as well as the robot walk with a bent knee. The latter disadvantage, makes the gait unnatural, energy inefficient and exert large amounts of torque to the knee joint. Thus creating a walking engine that produces a quality and natural gait is essential for humanoid robots in general and is a factor for succeeding in RoboCup competition. Humanoids robots are required to walk fast to be practical for various life tasks. However, its complex structure makes it prone to falling during fast locomotion. On the same hand, the robots are expected to work in constantly changing environments alongside humans and robots, which increase the chance of collisions. Several human-inspired recovery strategies have been studied and adopted to humanoid robots in order to face unexpected and avoidable perturbations. These strategies include hip, ankle, and stepping, however, the use of the arms as a recovery strategy did not enjoy as much attention. The arms can be employed in different motions for fall prevention. The arm rotation strategy can be employed to control the angular momentum of the body and help to regain balance. In this master\u27s thesis, I developed a detailed study of different ways in which the arms can be used to enhance the balance recovery of the NAO humanoid robot while stationary and during locomotion. I model the robot as a linear inverted pendulum plus a flywheel to account for the angular momentum change at the CoM. I considered the role of the arms in changing the body\u27s moment of inertia which help to prevent the robot from falling or to decrease the falling impact. I propose a control algorithm that integrates the arm rotation strategy with the on-board sensors of the NAO. Additionally, I present a simple method to control the amount of recovery from rotating the arms. I also discuss the limitation of the strategy and how it can have a negative impact if it was misused. I present simulations to evaluate the approach in keeping the robot stable against various disturbance sources. The results show the success of the approach in keeping the NAO stable against various perturbations. Finally,I adopt the arm rotation to stabilize the ball kick, which is a common reason for falling in the soccer humanoid RoboCup competitions

    Robot Soccer Strategy Based on Hierarchical Finite State Machine to Centralized Architectures

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works[EN] Coordination among the robots allows a robot soccer team to perform better through coordinated behaviors. This requires that team strategy is designed in line with the conditions of the game. This paper presents the architecture for robot soccer team coordination, involving the dynamic assignment of roles among the players. This strategy is divided into tactics, which are selected by a Hierarchical State Machine. Once a tactic has been selected, it is assigned roles to players, depending on the game conditions. Each role performs defined behaviors selected by the Hierarchical State Machine. To carry out the behaviors, robots are controlled by the lowest level of the Hierarchical State Machine. The architecture proposed is designed for robot soccer teams with a central decision-making body, with global perception. 200 games were performed against a team with constant roles, winning the 92.5% of the games, scoring more goals on average that the opponent, and showing a higher percent of ball possession. Student s t-test shows better matching with measurement uncertainty of the strategy proposed. This architecture allowed an intuitive design of the robot soccer strategy, facilitating the design of the rules for role selection and behaviors performed by the players, depending on the game conditions. Collaborative behaviors and uniformity within the players behaviors during the tactics and behaviors transitions were observedJose Guillermo Guarnizo ha sido financiado por una beca del Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIAS, Colombia.Guarnizo, JG.; Mellado Arteche, M. (2016). Robot Soccer Strategy Based on Hierarchical Finite State Machine to Centralized Architectures. IEEE Latin America Transactions. 14(8):3586-3596. doi:10.1109/TLA.2016.7786338S3586359614

    The Director: A Composable Behaviour System with Soft Transitions

    Full text link
    Software frameworks for behaviour are critical in robotics as they enable the correct and efficient execution of functions. While modern behaviour systems have improved their composability, they do not focus on smooth transitions and often lack functionality. In this work, we present the Director, a novel behaviour framework and algorithm that addresses these problems. It has functionality for soft transitions, multiple implementations of the same action chosen based on conditionals, and strict resource control. This system has shown success in the Humanoid Kid Size 2022/2023 Virtual Season and the Humanoid Kid Size RoboCup 2023 Bordeaux competition

    Architecting centralized coordination of soccer robots based on principle solution

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in Advanced Robotics on 2015, available online:http://www.tandfonline.com/10.1080/01691864.2015.1017534Coordination strategy is a relevant topic in multi-robot systems, and robot soccer offers a suitable domain to conduct research in multi-robot coordination. Team strategy collects and uses environmental information to derive optimal team reactions, through cooperation among individual soccer robots. This paper presents a diagrammatic approach to architecting the coordination strategy of robot soccer teams by means of a principle solution. The proposed model focuses on robot soccer leagues that possess a central decision-making system, involving the dynamic selection of the roles and behaviors of the robot soccer players. The work sets out from the conceptual design phase, facilitating cross-domain development efforts, where different layers must be interconnected and coordinated to perform multiple tasks. The principle solution allows for intuitive design and the modeling of team strategies in a highly complex robot soccer environment with changing game conditions. Furthermore, such an approach enables systematic realization of collaborative behaviors among the teammates.This work was partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under the CICYT project Mission Based Control (COBAMI): DPI2011-28507-C02-01/02. Jose G. Guarnizo was supported by a scholarship from the Administrative Department of Science, Technology and Innovation COLCIENCIAS, Colombia.Guarnizo Marín, JG.; Mellado Arteche, M.; Low, CY.; Blanes Noguera, F. (2015). Architecting centralized coordination of soccer robots based on principle solution. Advanced Robotics. 29(15):989-1004. https://doi.org/10.1080/01691864.2015.1017534S98910042915Farinelli, A., Iocchi, L., & Nardi, D. (2004). Multirobot Systems: A Classification Focused on Coordination. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34(5), 2015-2028. doi:10.1109/tsmcb.2004.832155Tews, A., & Wyeth, G. (2000). MAPS: a system for multi-agent coordination. Advanced Robotics, 14(1), 37-50. doi:10.1163/156855300741429Stulp, F., Utz, H., Isik, M., & Mayer, G. (2010). Implicit Coordination with Shared Belief: A Heterogeneous Robot Soccer Team Case Study. Advanced Robotics, 24(7), 1017-1036. doi:10.1163/016918610x496964Guarnizo, J. G., Mellado, M., Low, C. Y., & Aziz, N. (2013). Strategy Model for Multi-Robot Coordination in Robotic Soccer. Applied Mechanics and Materials, 393, 592-597. doi:10.4028/www.scientific.net/amm.393.592Riley, P., & Veloso, M. (2002). Recognizing Probabilistic Opponent Movement Models. Lecture Notes in Computer Science, 453-458. doi:10.1007/3-540-45603-1_59Ros, R., Arcos, J. L., Lopez de Mantaras, R., & Veloso, M. (2009). A case-based approach for coordinated action selection in robot soccer. Artificial Intelligence, 173(9-10), 1014-1039. doi:10.1016/j.artint.2009.02.004Atkinson, J., & Rojas, D. (2009). On-the-fly generation of multi-robot team formation strategies based on game conditions. Expert Systems with Applications, 36(3), 6082-6090. doi:10.1016/j.eswa.2008.07.039Costelha, H., & Lima, P. (2012). Robot task plan representation by Petri nets: modelling, identification, analysis and execution. Autonomous Robots, 33(4), 337-360. doi:10.1007/s10514-012-9288-xAbreu, P. H., Silva, D. C., Almeida, F., & Mendes-Moreira, J. (2014). Improving a simulated soccer team’s performance through a Memory-Based Collaborative Filtering approach. Applied Soft Computing, 23, 180-193. doi:10.1016/j.asoc.2014.06.021Duan, Y., Liu, Q., & Xu, X. (2007). Application of reinforcement learning in robot soccer. Engineering Applications of Artificial Intelligence, 20(7), 936-950. doi:10.1016/j.engappai.2007.01.003Hwang, K.-S., Jiang, W.-C., Yu, H.-H., & Li, S.-Y. (2011). Cooperative Reinforcement Learning Based on Zero-Sum Games. Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training. doi:10.5772/26620Gausemeier, J., Dumitrescu, R., Kahl, S., & Nordsiek, D. (2011). Integrative development of product and production system for mechatronic products. Robotics and Computer-Integrated Manufacturing, 27(4), 772-778. doi:10.1016/j.rcim.2011.02.005Klančar, G., Zupančič, B., & Karba, R. (2007). Modelling and simulation of a group of mobile robots. Simulation Modelling Practice and Theory, 15(6), 647-658. doi:10.1016/j.simpat.2007.02.002Gausemeier, J., Frank, U., Donoth, J., & Kahl, S. (2009). Specification technique for the description of self-optimizing mechatronic systems. Research in Engineering Design, 20(4), 201-223. doi:10.1007/s00163-008-0058-

    Development and Evaluation of a Simulation Tool for Robotics Education

    Get PDF
    This IQP is aimed at constructing a virtual robotic simulator and then testing its effectiveness as a learning tool. After researching other simulators, the team developed a simulator called Lua Visual. To determine if Lua Visual could be used as learning tool, the team tested how both high school and college students reacted to the software. The results suggested that simulators like Lua Visual would be very useful for robotics education. Video of the simulator can be found here: http://www.youtube.com/watch?v=cG5vG_-0UY
    corecore