2,128 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 346)

    Get PDF
    This bibliography lists 134 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Autonomous behaviour in tangible user interfaces as a design factor

    Get PDF
    PhD ThesisThis thesis critically explores the design space of autonomous and actuated artefacts, considering how autonomous behaviours in interactive technologies might shape and influence users’ interactions and behaviours. Since the invention of gearing and clockwork, mechanical devices were built that both fascinate and intrigue people through their mechanical actuation. There seems to be something magical about moving devices, which draws our attention and piques our interest. Progress in the development of computational hardware is allowing increasingly complex commercial products to be available to broad consumer-markets. New technologies emerge very fast, ranging from personal devices with strong computational power to diverse user interfaces, like multi-touch surfaces or gestural input devices. Electronic systems are becoming smaller and smarter, as they comprise sensing, controlling and actuation. From this, new opportunities arise in integrating more sensors and technology in physical objects. These trends raise some specific questions around the impacts smarter systems might have on people and interaction: how do people perceive smart systems that are tangible and what implications does this perception have for user interface design? Which design opportunities are opened up through smart systems? There is a tendency in humans to attribute life-like qualities onto non-animate objects, which evokes social behaviour towards technology. Maybe it would be possible to build user interfaces that utilise such behaviours to motivate people towards frequent use, or even motivate them to build relationships in which the users care for their devices. Their aim is not to increase the efficiency of user interfaces, but to create interfaces that are more engaging to interact with and excite people to bond with these tangible objects. This thesis sets out to explore autonomous behaviours in physical interfaces. More specifically, I am interested in the factors that make a user interpret an interface as autonomous. Through a review of literature concerned with animated objects, autonomous technology and robots, I have mapped out a design space exploring the factors that are important in developing autonomous interfaces. Building on this and utilising workshops conducted with other researchers, I have vi developed a framework that identifies key elements for the design of Tangible Autonomous Interfaces (TAIs). To validate the dimensions of this framework and to further unpack the impacts on users of interacting with autonomous interfaces I have adopted a ‘research through design’ approach. I have iteratively designed and realised a series of autonomous, interactive prototypes, which demonstrate the potential of such interfaces to establish themselves as social entities. Through two deeper case studies, consisting of an actuated helium balloon and desktop lamp, I provide insights into how autonomy could be implemented into Tangible User Interfaces. My studies revealed that through their autonomous behaviour (guided by the framework) these devices established themselves, in interaction, as social entities. They furthermore turned out to be acceptable, especially if people were able to find a purpose for them in their lives. This thesis closes with a discussion of findings and provides specific implications for design of autonomous behaviour in interfaces

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming

    Get PDF
    A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly

    Compact and kinetic projected augmented reality interface

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 143-150).For quite some time, researchers and designers in the field of human computer interaction have strived to better integrate information interfaces into our physical environment. They envisioned a future where computing and interface components would be integrated into the physical environment, creating a seamless experience that uses all our senses. One possible approach to this problem employs projected augmented reality. Such systems project digital information and interfaces onto the physical world and are typically implemented using interactive projector-camera systems. This thesis work is centered on design and implementation of a new form factor for computing, a system we call LuminAR. LuminAR is a compact and kinetic projected augmented reality interface embodied in familiar everyday objects, namely a light bulb and a task light. It allows users to dynamically augment physical surfaces and objects with superimposed digital information using gestural and multi-touch interfaces. This thesis documents LuminAR's design process, hardware and software implementation and interaction techniques. The work is motivated through a set of applications that explore scenarios for interactive and kinetic projected augmented reality interfaces. It also opens the door for further explorations of kinetic interaction and promotes the adoption of projected augmented reality as a commonplace user interface modality. This thesis work was partially supported by a research grant from Intel Corporation.Supported by a research grant from Intel Corporationby Natan Linder.S.M

    Fluency and embodiment for robots acting with humans

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.Includes bibliographical references (p. 225-234).This thesis is concerned with the notion of fluency in human-robot interaction (HRI), exploring cognitive mechanisms for robotic agents that would enable them to overcome the stop-and-go rigidity present in much of HRI to date. We define fluency as the ethereal yet manifest quality existent when two agents perform together at high level of coordination and adaptation, in particular when they are well-accustomed to the task and to each other. Based on mounting psychological and neurological evidence, we argue that one of the keys to this goal is the adaptation of an embodied approach to robot cognition. We show how central ideas from this psychological school are applicable to robot cognition and present a cognitive architecture making use of perceptual symbols, simulation, and perception-action networks. In addition, we demonstrate that anticipation of perceptual input, and in particular of the actions of others, are an important ingredient of fluent joint action. To that end, we show results from an experiment studying the effects of anticipatory action on fluency and teamwork, and use these results to suggest benchmark metrics for fluency. We also show the relationship between anticipatory action and a simulator approach to perception, through a comparative human subject study of an implemented cognitive architecture on the robot AUR, a robotic desk lamp, designed for this thesis. A result of this work is modeling the effect of practice on human-robot joint action, arguing that mechanisms that govern the passage of cognitive capabilities from a deliberate yet slower system to a faster, sub-intentional, and more rigid one, are crucial to fluent joint action in well-rehearsed ensembles. Theatrical acting theory serves as an inspiration for this work, as we argue that lessons from acting method can be applied to human-robot interaction.by Guy Hoffman.Ph.D
    • …
    corecore