49,644 research outputs found

    Information requirements for enterprise systems

    Get PDF
    In this paper, we discuss an approach to system requirements engineering, which is based on using models of the responsibilities assigned to agents in a multi-agency system of systems. The responsibility models serve as a basis for identifying the stakeholders that should be considered in establishing the requirements and provide a basis for a structured approach, described here, for information requirements elicitation. We illustrate this approach using a case study drawn from civil emergency management

    A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized System

    Full text link
    Self-adaptation is a promising approach to manage the complexity of modern software systems. A self-adaptive system is able to adapt autonomously to internal dynamics and changing conditions in the environment to achieve particular quality goals. Our particular interest is in decentralized self-adaptive systems, in which central control of adaptation is not an option. One important challenge in self-adaptive systems, in particular those with decentralized control of adaptation, is to provide guarantees about the intended runtime qualities. In this paper, we present a case study in which we use model checking to verify behavioral properties of a decentralized self-adaptive system. Concretely, we contribute with a formalized architecture model of a decentralized traffic monitoring system and prove a number of self-adaptation properties for flexibility and robustness. To model the main processes in the system we use timed automata, and for the specification of the required properties we use timed computation tree logic. We use the Uppaal tool to specify the system and verify the flexibility and robustness properties.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Flexible Global Software Development (GSD): Antecedents of Success in Requirements Analysis

    Get PDF
    Globalization of software development has resulted in a rapid shift away from the traditional collocated, on-site development model, to the offshoring model. Emerging trends indicate an increasing interest in offshoring even in early phases like requirements analysis. Additionally, the flexibility offered by the agile development approach makes it attractive for adaptation in globally distributed software work. A question of significance then is what impacts the success of offshoring earlier phases, like requirements analysis, in a flexible and globally distributed environment? This article incorporates the stance of control theory to posit a research model that examines antecedent factors such as requirements change, facilitation by vendor and client site-coordinators, control, and computer-mediated communication. The impact of these factors on success of requirements analysis projects in a “flexible” global setting is tested using two quasi-experiments involving students from Management Development Institute, India and Marquette University, USA. Results indicate that formal modes of control significantly influence project success during requirements analysis. Further, facilitation by both client and vendor site coordinators positively impacts requirements analysis success
    corecore