366 research outputs found

    Vector-Matrix-Vector Queries for Solving Linear Algebra, Statistics, and Graph Problems

    Get PDF
    We consider the general problem of learning about a matrix through vector-matrix-vector queries. These queries provide the value of u^{T}Mv over a fixed field ? for a specified pair of vectors u,v ? ??. To motivate these queries, we observe that they generalize many previously studied models, such as independent set queries, cut queries, and standard graph queries. They also specialize the recently studied matrix-vector query model. Our work is exploratory and broad, and we provide new upper and lower bounds for a wide variety of problems, spanning linear algebra, statistics, and graphs. Many of our results are nearly tight, and we use diverse techniques from linear algebra, randomized algorithms, and communication complexity

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse

    A Direct-Sum Theorem for Read-Once Branching Programs

    Get PDF
    We study a direct-sum question for read-once branching programs. If M(f) denotes the minimum average memory required to compute a function f(x_1,x_2, ..., x_n) how much memory is required to compute f on k independent inputs that arrive in parallel? We show that when the inputs are sampled independently from some domain X and M(f) = Omega(n), then computing the value of f on k streams requires average memory at least Omega(k * M(f)/n). Our results are obtained by defining new ways to measure the information complexity of read-once branching programs. We define two such measures: the transitional and cumulative information content. We prove that any read-once branching program with transitional information content I can be simulated using average memory O(n(I+1)). On the other hand, if every read-once branching program with cumulative information content I can be simulated with average memory O(I+1), then computing f on k inputs requires average memory at least Omega(k * (M(f)-1))

    On the communication complexity of sparse set disjointness and exists-equal problems

    Full text link
    In this paper we study the two player randomized communication complexity of the sparse set disjointness and the exists-equal problems and give matching lower and upper bounds (up to constant factors) for any number of rounds for both of these problems. In the sparse set disjointness problem, each player receives a k-subset of [m] and the goal is to determine whether the sets intersect. For this problem, we give a protocol that communicates a total of O(k\log^{(r)}k) bits over r rounds and errs with very small probability. Here we can take r=\log^{*}k to obtain a O(k) total communication \log^{*}k-round protocol with exponentially small error probability, improving on the O(k)-bits O(\log k)-round constant error probability protocol of Hastad and Wigderson from 1997. In the exist-equal problem, the players receive vectors x,y\in [t]^n and the goal is to determine whether there exists a coordinate i such that x_i=y_i. Namely, the exists-equal problem is the OR of n equality problems. Observe that exists-equal is an instance of sparse set disjointness with k=n, hence the protocol above applies here as well, giving an O(n\log^{(r)}n) upper bound. Our main technical contribution in this paper is a matching lower bound: we show that when t=\Omega(n), any r-round randomized protocol for the exists-equal problem with error probability at most 1/3 should have a message of size \Omega(n\log^{(r)}n). Our lower bound holds even for super-constant r <= \log^*n, showing that any O(n) bits exists-equal protocol should have \log^*n - O(1) rounds
    corecore