85 research outputs found

    Astrocytic modulation of neuronal network oscillations

    Get PDF
    The synchronization of the neuron’s membrane potential results in the emergence of neuronal oscillations at multiple frequencies that serve distinct physiological functions (e.g. facilitation of synaptic plasticity) and correlate with different behavioural states (e.g. sleep, wakefulness, attention). It has been postulated that at least ten distinct mechanisms are required to cover the large frequency range of neuronal oscillations in the cortex, including variations in the concentration of extracellular neurotransmitters and ions, as well as changes in cellular excitability. However, the mechanism that gears the transition between different oscillatory frequencies is still unknown. Over the past decade, astrocytes have been the focus of much research, mainly due to (1) their close association with synapses forming what is known today as the “tripartite synapse”, which allows them to bidirectionally interact with neurons and modulate synaptic transmission; (2) their syncytium-like activity, as they are electrically coupled via gap junctions and actively communicate through Ca2+ waves; and (3) their ability to regulate neuronal excitability via glutamate uptake and tight control of the extracellular K+ levels via a process termed K+ clearance. In this thesis we hypothesized that astrocytes, in addition to their role as modulators of neuronal excitability, also act as “network managers” that can modulate the overall network oscillatory activity within their spatial domain. To do so, it is proposed that astrocytes fine-tune their K+ clearance capabilities to affect neuronal intrinsic excitability properties and synchronization with other neurons, thus mediating the transitions between neuronal network oscillations at different frequencies. To validate or reject this hypothesis I have investigated the potential role of astrocytes in modulating cortical oscillations at both cellular and network levels, aiming at answering three main research questions: a) what is the impact of alterations in astrocytic K+ clearance mechanisms on cortical networks oscillatory dynamics? b) what specific neuronal properties underlying the generation of neuronal oscillations are affected as a result of impairments in the astrocytic K+ clearance process? and c) what are the bidirectional mechanisms between neurons and astrocytes (i.e. neuromodulators) that specifically affect the K+ clearance process to modulate the network activity output? In the first experimental chapter I used electrophysiological recordings and pharmacological manipulations to dissect the contribution of the different astrocytic K+ clearance mechanisms to the modulation of neuronal network oscillations at multiple frequencies. A key finding was that alterations in membrane properties of layer V pyramidal neurons strongly correlated with the network behaviour following impairments in astrocytic K+ clearance capabilities, depicted as enhanced excitability underlying the amplification of high-frequency oscillations, especially within the beta and gamma range. The second experimental chapter describes a combinatorial approach based on K+-selective microelectrode recordings and optical imaging of K+ ions used to quantitatively determine extracellular K+ changes and to follow the spatiotemporal distribution of K+ ions under both physiological and altered K+ clearance conditions, which affected the K+ clearance rate. The impact of different neuromodulators on astrocytic function is discussed in the third experimental chapter. Using extracellular K+ recordings and Ca2+ imaging I found that some neuromodulators act specifically on astrocytic receptors to affect both K+ clearance mechanisms and Ca2+ signalling, as evidenced by reduced K+ clearance rates and altered evoked Ca2+ signals. Overall, this thesis provides new insights regarding the impact of astrocytic K+ clearance mechanisms on modulating neuronal properties at both cellular and network levels, which in turn imposes alterations on neuronal oscillations that are associated with different behavioural states

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    Neuronal oscillations, information dynamics, and behaviour: an evolutionary robotics study

    Get PDF
    Oscillatory neural activity is closely related to cognition and behaviour, with synchronisation mechanisms playing a key role in the integration and functional organization of different cortical areas. Nevertheless, its informational content and relationship with behaviour - and hence cognition - are still to be fully understood. This thesis is concerned with better understanding the role of neuronal oscillations and information dynamics towards the generation of embodied cognitive behaviours and with investigating the efficacy of such systems as practical robot controllers. To this end, we develop a novel model based on the Kuramoto model of coupled phase oscillators and perform three minimally cognitive evolutionary robotics experiments. The analyses focus both on a behavioural level description, investigating the robot’s trajectories, and on a mechanism level description, exploring the variables’ dynamics and the information transfer properties within and between the agent’s body and the environment. The first experiment demonstrates that in an active categorical perception task under normal and inverted vision, networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally, and to adapt to different behavioural conditions. The second experiment relates assembly constitution and phase reorganisation dynamics to performance in supervised and unsupervised learning tasks. We demonstrate that assembly dynamics facilitate the evolutionary process, can account for varying degrees of stimuli modulation of the sensorimotor interactions, and can contribute to solving different tasks leaving aside other plasticity mechanisms. The third experiment explores an associative learning task considering a more realistic connectivity pattern between neurons. We demonstrate that networks with travelling waves as a default solution perform poorly compared to networks that are normally synchronised in the absence of stimuli. Overall, this thesis shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, produce an asymmetric flow of information and can generate minimally cognitive embodied behaviours

    The in vivo functional neuroanatomy and neurochemistry of vibrotactile processing

    Get PDF
    Touch is a sense with which humans are able to actively explore the world around them. Primary somatosensory cortex (S1) processing has been studied to differing degrees at both the macroscopic and microscopic levels in both humans and animals. Both levels of enquiry have their advantages, but attempts to combine the two approaches are still in their infancy. One mechanism that is possibly involved in determining the reponse properties of neurons that are involved in sensory discrimination is inhibition by γ-aminobutyric acid (GABA). Several studies have shown that inhibition is an important mechanism to “tune” the response of neurons. Recently it has become possible to measure the concentration of GABA in vivo using edited Magnetic Resonance Spectroscopy (MRS), whereas magnetoencephalography (MEG) offers the possibility to look at changes in neuromagnetic activation with millisecond accuracy. With these methods we aimed to establish whether in vivo non-invasive neuroimaging can elucidate the underlying neuronal mechanisms of human tactile behaviour and to determine how such findings can be integrated with what is currently known from invasive methods. Edited GABA-MRS has shown that individual GABA concentration in S1 correlates strongly with tactile frequency discrimination. MEG was used to investigate the neuromagnetic correlates of a frequency discrimination paradigm in which we induced adaptation to a 25 Hz frequency. We showed that S1 is driven by the adapting stimulus and shows that neural rhythms are modulated as a result of adaptation. This is the first time that behavioural psychophysics of tactile adaptation has been investigated using complimentary neuroimaging methods. We combined different methods to complement both physiological and behavioural studies of tactile processing in S1 to investigate the factors involved in the neural dynamics of tactile processing and we show that non-invasive studies on humans can be used to understand physiological underpinnings of somatosensory processing.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The in vivo functional neuroanatomy and neurochemistry of vibrotactile processing

    Get PDF
    Touch is a sense with which humans are able to actively explore the world around them. Primary somatosensory cortex (S1) processing has been studied to differing degrees at both the macroscopic and microscopic levels in both humans and animals. Both levels of enquiry have their advantages, but attempts to combine the two approaches are still in their infancy. One mechanism that is possibly involved in determining the reponse properties of neurons that are involved in sensory discrimination is inhibition by γ-aminobutyric acid (GABA). Several studies have shown that inhibition is an important mechanism to “tune” the response of neurons. Recently it has become possible to measure the concentration of GABA in vivo using edited Magnetic Resonance Spectroscopy (MRS), whereas magnetoencephalography (MEG) offers the possibility to look at changes in neuromagnetic activation with millisecond accuracy. With these methods we aimed to establish whether in vivo non-invasive neuroimaging can elucidate the underlying neuronal mechanisms of human tactile behaviour and to determine how such findings can be integrated with what is currently known from invasive methods. Edited GABA-MRS has shown that individual GABA concentration in S1 correlates strongly with tactile frequency discrimination. MEG was used to investigate the neuromagnetic correlates of a frequency discrimination paradigm in which we induced adaptation to a 25 Hz frequency. We showed that S1 is driven by the adapting stimulus and shows that neural rhythms are modulated as a result of adaptation. This is the first time that behavioural psychophysics of tactile adaptation has been investigated using complimentary neuroimaging methods. We combined different methods to complement both physiological and behavioural studies of tactile processing in S1 to investigate the factors involved in the neural dynamics of tactile processing and we show that non-invasive studies on humans can be used to understand physiological underpinnings of somatosensory processing

    Principles of excitatory and inhibitory functional connectivity in cerebellar cortex in vivo

    Get PDF
    Determining the functional impact of single interneurons on neuronal output, and how interneurons are recruited by physiological patterns of excitation, are crucial to our understanding of inhibition. In the cerebellar cortex, molecular layer interneurons and their targets, Purkinje cells, receive excitatory inputs from granule cells and climbing fibres, the latter signalling to interneurons via glutamate spillover. How these feed-forward pathways are engaged by physiological patterns of activity in vivo is insufficiently understood. Using dual patch-clamp recordings from interneurons and Purkinje cells in mice in vivo, I have probed the spatiotemporal interactions between these circuit elements. I demonstrate that single spikes in single interneurons can potently inhibit the spiking of Purkinje cells. Granule cell input activates both interneurons and the Purkinje cells they inhibit, generating local feed-forward inhibition. Climbing fibre input activates interneurons via glutamate spillover, but only rarely activates interneurons that inhibit spiking of the same Purkinje cell receiving the climbing fibre input. Rather, by activating inhibition among interneurons, climbing fibre glutamate spillover results in delayed inhibition of interneurons controlling Purkinje cell spike output, forming a disinhibitory motif. Functional climbing fibre-interneuron inhibition, inhibition among interneurons, and interneuron-Purkinje cell inhibition are vertically organised in the molecular layer, providing an anatomical substrate for this microcircuit motif. During sensory processing, these motifs account for pathway-specific recruitment of interneurons, generating fast and delayed excitatory interneuron responses via the granule cell and climbing fibre pathway, respectively. Sensory stimulation recruits granule cell input into INs and PCs near-simultaneously, resulting in rapid feed-forward inhibition. Together, these findings quantify the functional impact of single interneurons on their targets in vivo, and reveal how granule cell and climbing fibre inputs differentially recruit inhibitory microcircuits to diversify cerebellar computations

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin
    corecore