10 research outputs found

    Cardiac re-entry dynamics & self-termination in DT-MRI based model of Human Foetal Heart

    Get PDF
    The effect of heart geometry and anisotropy on cardiac re-entry dynamics and self-termination is studied here in anatomically realistic computer simulations of human foetal heart. 20 weeks of gestational age human foetal heart isotropic and anisotropic anatomy models from diffusion tensor MRI data sets are used in the computer simulations. The fibre orientation angles of the heart were obtained from the DT-MRI primary eigenvalues. In a spatially homogeneous electrophysiological mono domain model with the DT-MRI based heart geometries, we initiate simplified Fitz-Hugh-Nagumo kinetics cardiac re-entry at a prescribed location in a 2D slice, and in the full 3D anatomy model. In a slice of the heart, the MRI based fibre anisotropy changes the re-entry dynamics from pinned to anatomical re-entry. In the full 3D MRI based model, the foetal heart fibre anisotropy changes the re-entry dynamics from a persistent re-entry to the re-entry self-termination

    BeatBox - HPC simulation environment for biophysically and anatomically realistic cardiac electrophysiology

    Get PDF
    The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.Comment: 37 pages, 10 figures, last version submitted to PLOS ON

    Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart

    Get PDF
    The effect of human fetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human fetal heart obtained from 100 ΞΌm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibers than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry's initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregula

    Dynamics of cardiac re-entry in micro-CT and serial histological sections based models of mammalian hearts

    Get PDF
    Cardiac re-entry regime of self-organised abnormal synchronisation underlie dangerous arrhythmias and fatal fibrillation. Recent advances in the theory of dissipative vortices, experimental studies, and anatomically realistic computer simulations, elucidated the role of cardiac re-entry interaction with fine anatomical features in the heart, and anatomy induced drift. The fact that anatomy and structural anisotropy of the heart is consistent within a species suggested its possible functional effect on spontaneous drift of cardiac re-entry. A comparative study of the anatomy induced drift could be used in order to predict evolution of atrial arrhythmia, and improve low-voltage defibrillation protocols and ablation strategies. Here, in micro-CT based model of rat pulmonary vein wall, and in sheep atria models based on high resolution serial histological sections, we demonstrate effects of heart geometry and anisotropy on cardiac re-entry anatomy induced drift, its pinning to fluctuations of thickness in the layer. The data sets of sheep atria and rat pulmonary vein wall are incorporated into the BeatBox High Performance Computing simulation environment. Re-entry is initiated at prescribed locations in the spatially homogeneous mono-domain models of cardiac tissue. Excitation is described by FitzHugh-Nagumo kinetics. In the in-silico models, isotropic and anisotropic conduction show specific anatomy effects and the interplay between anatomy and anisotropy of the heart. The main objectives are to demonstrate the functional role of the species hearts geometry and anisotropy on cardiac re-entry anatomy induced drift. In case of the rat pulmonary vein wall with ~90 degree transmural fibre rotation, it is shown that the joint effect of the PV wall geometry and anisotropy turns a plane excitation wave into a re-entry pinned to a small fluctuation of thickness in the wall

    Areas of Effectiveness of Half-Sine Monophasic and Biphasic Depolarizing Defibrillation Pulses on the Diagram of Energy / Phase of Fibrillation Cycle

    Full text link
    Π‘Π»Π°Π³ΠΎΠ΄Π°Ρ€ΠΈΠΌ АО «ПО Β«Π£ΠžΠœΠ—Β», Π² Π»ΠΈΡ†Π΅ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ конструктора ΠšΠ‘ мСдицинских ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Π§ΡƒΠΏΠΎΠ²Π° АлСксСя АлСксандровича, Π·Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… исслСдований Π² области элСктричСской дСфибрилляции.ΠŸΠΎΡΡ‚ΡƒΠΏΠΈΠ»Π°: 15.12.2021. ΠŸΡ€ΠΈΠ½ΡΡ‚Π° Π² ΠΏΠ΅Ρ‡Π°Ρ‚ΡŒ: 12.01.2022.We are grateful to JSC PA UOMZ, represented by the chief designer of the design bureau of medical devices, Aleksey A. Chupov, for the active development of applied research in the field of electrical defibrillation.Received: 15.12.2021. Accepted: 12.01.2022.ЦСлью Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования являСтся сравнСниС областСй эффСктивности ΠΏΠΎΠ»ΡƒΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹Ρ… монополярного ΠΈ биполярного Π΄Π΅ΠΏΠΎΠ»ΡΡ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… дСфибрилляционных ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅ энСргия / Ρ„Π°Π·Π° Ρ†ΠΈΠΊΠ»Π° фибрилляции. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ модСлирования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ области эффСктивности Ρƒ монополярного ΠΈ биполярного дСфибрилляционных ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ сущСствСнноС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅. Π£ биполярного ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° доля Ρ†ΠΈΠΊΠ»Π° фибрилляции, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ обСспСчиваСтся ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ рСфрактСрности, ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… значСниях энСргии дСфибрилляционного ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° сущСствСнно ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠ²ΡƒΡŽ Ρƒ монополярного ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°. МоТно ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ этим обСспСчиваСтся энСргСтичСскоС прСимущСство биполярного ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° дСфибрилляции ΠΏΠ΅Ρ€Π΅Π΄ монополярным.The aim of this study is to compare the areas of effectiveness of half-sine monophasic and biphasic depolarizing defibrillation pulses in the diagram of energy / phase of fibrillation cycle. The study was carried out on the ten Tusscher-Panfilov 2006 model of the human ventricular myocyte under the influence of simulated fibrillation in the BeatBox simulation environment under the Fedora operating system. The simulation was carried out on a computer under the Windows 10 operating system, the Fedora operating system was implemented in the Oracle VM VirtualBox virtualization environment. The results of computer simulations have shown that the areas of effectiveness for monophasic and biphasic defibrillation pulses are significantly different. In a biphasic pulse, the fraction of a fibrillation cycle at which refractoriness is extended is significantly higher than that of a monophasic pulse at low defibrillation pulse energies. It can be assumed that this provides the energy advantage of a biphasic defibrillation pulse over a monophasic one.НастоящиС исслСдования Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° Β«Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ высокотСхнологичного производства мСдицинских ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ для восстановлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сСрдца Π² обСспСчСниС общСдоступной дСфибрилляции».This research was carried out during the implementation of the project β€œCreation of high-tech production of medical devices for the restoration of heart function to ensure public defibrillation”

    Comparison of the Energy Efficiency of Defibrillation Pulses Based on the Hypothesis of Guaranteed Defibrillation

    Full text link
    Π‘Π»Π°Π³ΠΎΠ΄Π°Ρ€ΠΈΠΌ АО «ПО Β«Π£ΠžΠœΠ—Β», Π² Π»ΠΈΡ†Π΅ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ конструктора ΠšΠ‘ мСдицинских ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Π§ΡƒΠΏΠΎΠ²Π° АлСксСя АлСксандровича, Π·Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… исслСдований Π² области элСктричСской дСфибрилляции.ΠŸΠΎΡΡ‚ΡƒΠΏΠΈΠ»Π°: 27.09.2021. ΠŸΡ€ΠΈΠ½ΡΡ‚Π° Π² ΠΏΠ΅Ρ‡Π°Ρ‚ΡŒ: 12.01.2022.We are grateful to JSC PA UOMP, represented by the chief designer of the design bureau of medical devices, Aleksey A. Chupov, for the active development of applied research in the field of electrical defibrillation.Received: 27.09.2021. Accepted: 12.01.2022.ЦСлью Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования являСтся сравнСниС Π½Π° основС Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ дСфибрилляции энСргСтичСской эффСктивности биполярного Ρ‚Ρ€Π°ΠΏΠ΅Ρ†Π΅ΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° с фиксированной Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ Ρ„Ρ€ΠΎΠ½Ρ‚Π° ΠΈ срСза с основными Ρ‚ΠΈΠΏΠ°ΠΌΠΈ дСфибрилляционных ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ²: классичСской Ρ‚Ρ€Π°ΠΏΠ΅Ρ†Π΅ΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠΉ (truncated exponential) со спадом Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ 50%, ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΠ»ΡƒΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠΉ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ модСлирования Π½Π° Π±Π°Π·Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ дСфибрилляции ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ дСфибрилляционныС ΠΈΠΌΠΏΡƒΠ»ΡŒΡΡ‹ энСргСтичСски эффСктивны (ΠΈΠΌΠ΅ΡŽΡ‚ Π½ΠΈΠ·ΠΊΠΈΠ΅ значСния ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠΉ энСргии дСфибрилляции) Π² достаточно ΡƒΠ·ΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„Π°Π·, Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ быстрый рост ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠΉ энСргии. По энСргСтичСской эффСктивности Ρ‚Ρ€Π°ΠΏΠ΅Ρ†Π΅ΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠΌΠΏΡƒΠ»ΡŒΡ с ΠΏΠΎΠ»ΠΎΠ³ΠΈΠΌΠΈ Ρ„Ρ€ΠΎΠ½Ρ‚ΠΎΠΌ ΠΈ срСзом ΠΎΡ‡Π΅Π½ΡŒ Π±Π»ΠΈΠ·ΠΎΠΊ ΠΊ ΠΏΠΎΠ»ΡƒΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠΌΡƒ, ΠΈ ΠΏΡ€ΠΈ этом ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ энСргСтичСски эффСктивных Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. БущСствСнно Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΡƒΡŽ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ дСфибрилляции ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΈ классичСский Ρ‚Ρ€Π°ΠΏΠ΅Ρ†Π΅ΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΉ со спадом Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ 0,5 ΠΈΠΌΠΏΡƒΠ»ΡŒΡΡ‹, ΠΏΡ€ΠΈ этом классичСский Ρ‚Ρ€Π°ΠΏΠ΅Ρ†Π΅ΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠΌΠΏΡƒΠ»ΡŒΡ ΠΈΠΌΠ΅Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΡƒΡŽ характСристику Π² области энСргСтичСски эффСктивных Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. Из ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ„Π°Π· дСфибрилляционного ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° слСдуСт ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 9 мс. ΠŸΡ€ΠΈ этом номинальная выдСлСнная энСргия Π½Π° сопротивлСнии Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ 175 Ом Π΄ΠΎΠ»ΠΆΠ½Π° ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 140 Π”ΠΆ. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ увСличСния Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π±Π΅Π· Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ падСния Π΅Π³ΠΎ энСргСтичСской эффСктивности ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ большСй энСргии Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с высоким сопротивлСниСм Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ, соотвСтствСнно, Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ провСдСния ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΉ дСфибрилляции. Π£ΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ Π²Ρ‹ΡˆΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ провСдСния ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΉ дСфибрилляции Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈ ΠΎΡˆΠΈΠ±ΠΊΠ°Ρ… налоТСния дСфибрилляционных элСктродов ΠΈΠ»ΠΈ использовании сухих ΠΌΠ½ΠΎΠ³ΠΎΡ€Π°Π·ΠΎΠ²Ρ‹Ρ… дСфибрилляционных элСктродов.The aim of this study is to compare, on the basis of the guaranteed defibrillation hypothesis, the energy efficiency of a trapezoidal defibrillation pulse with fixed rise and fall times with the main types of defibrillation pulses: truncated exponential with the tilt of 50%, rectangular and half-sine. The study was carried out using the ten Tusscher–Panfilov 2006 human ventricular myocyte model subjected to simulated fibrillation in the BeatBox simulation environment. Depolarizing excitation stimuli with a high frequency were used to simulate fibrillation. The results of computer simulation based on the hypothesis of the guaranteed defibrillation showed that defibrillation pulses are energetically efficient (have low values of threshold energy of defibrillation) in a rather narrow range of phase duration values, beyond which a rapid increase in the threshold energy is observed. In terms of energy efficiency, the trapezoidal pulse with the sloping rise and fall is very close to the half-sine one, and at the same time it has a wider range of energetically effective durations. Significantly higher minimum threshold energy of guaranteed efibrillation is a characteristic of rectangular and truncated exponential pulses, while the truncated exponential pulse has a more uniform characteristic in the area of energetically effective durations. From the results obtained, it can be assumed that the maximum duration of the phases of the defibrillation pulse should be limited to the value of no more than 9ms. In this case, the nominal delivered energy at the load impedance of 175Ξ© should be at least 140J. The possibility of increasing the pulse duration without a significant drop in its energy efficiency will ensure the delivery of more energy in patients with high transthoracic impedance and, accordingly, a greater probability of successful defibrillation. The above will also increase the probability of successful defibrillation in patients with defibrillation electrodes placement errors.НастоящиС исслСдования Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° Β«Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ высокотСхнологичного производства мСдицинских ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ для восстановлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сСрдца Π² обСспСчСниС общСдоступной дСфибрилляции».This research was carried out during the implementation of the project β€œCreation of high-tech production of medical devices for the restoration of heart function to ensure public defibrillation.

    High-performance computing for computational biology of the heart

    Get PDF
    This thesis describes the development of Beatbox β€” a simulation environment for computational biology of the heart. Beatbox aims to provide an adaptable, approachable simulation tool and an extensible framework with which High Performance Computing may be harnessed by researchers. Beatbox is built upon the QUI software package, which is studied in Chapter 2. The chapter discusses QUI’s functionality and common patterns of use, and describes its underlying software architecture, in particular its extensibility through the addition of new software modules called β€˜devices’. The chapter summarises good practice for device developers in the Laws of Devices. Chapter 3 discusses the parallel architecture of Beatbox and its implementation for distributed memory clusters. The chapter discusses strategies for domain decomposition, halo swapping and introduces an efficient method for exchange of data with diagonal neighbours called Magic Corners. The development of Beatbox’s parallel Input/Output facilities is detailed, and its impact on scaling performance discussed. The chapter discusses the way in which parallelism can be hidden from the user, even while permitting the runtime execution user-defined functions. The chapter goes on to show how QUI’s extensibility can be continued in a parallel environment by providing implicit parallelism for devices and defining Laws of Parallel Devices to guide third-party developers. Beatbox’s parallel performance is evaluated and discussed. Chapter 4 describes the extension of Beatbox to simulate anatomically realistic tissue geometry. Representation of irregular geometries is described, along with associated user controls. A technique to compute no-flux boundary conditions on irregular boundaries is introduced. The Laws of Devices are further developed to include irregular geometries. Finally, parallel performance of anatomically realistic meshes is evaluated

    Mathematical and Computational Study of Markovian Models of Ion Channels in Cardiac Excitation

    Get PDF
    This thesis studies numerical methods for integrating the master equations describing Markov chain models of cardiac ion channels. Such models describe the time evolution of the probability that ion channels are in a particular state. Numerical simulations of such models are often computationally demanding because many solvers require relatively small time steps to ensure numerical stability. The aim of this project is to analyse selected Markov chains and develop more efficient and accurate solvers. We separate a Markov chain model into fast and slow time-scales based on the speed of transitions between states. Eliminating the fast transitions, we find an asymptotic reduction of zeroth-order and first-order in a small parameter describing the time-scales separation. We apply the theory to a Markov chain model of the fast sodium channel INa. We consider several variants for classifying some transitions as fast in order to find reduced systems that yield a good accuracy. However, the time step size is still restricted by numerical instabilities. We adapt the Rush-Larsen technique originally developed for gate models. Assuming that a transition matrix can be considered constant during each time step, we solve the Markov chain model analytically. The solution provides a recipe for a stable exponential solver, which we call "Matrix Rush-Larsen" (MRL). Using operator splitting we design an even more flexible "hybrid" method that combines the MRL with other solvers. The resulting improvement in stability allows a large increase in the time step size. In some models, we obtain reasonably accurate results 27 times faster using a hybrid method than with the forward Euler method, even with the maximal time step allowed by the stability constraint. Finally, we extend the cardiac simulation package BeatBox by the developed exponential solvers. We upgrade a format of "ionic" modules which describe a cardiac cell, in order to allow for a specific definition of Markov chain models. We also modify a particular integrator for ionic modules to include the MRL and the hybrid method. To test the functionality of the code, we have converted a number of cellular models into the ionic format. The documented code is available in the official BeatBox package distribution
    corecore