909 research outputs found

    Performance Analysis of Bearings-only Tracking Problems for Maneuvering Target and Heterogeneous Sensor Applications

    Get PDF
    State estimation, i.e. determining the trajectory, of a maneuvering target from noisy measurements collected by a single or multiple passive sensors (e.g. passive sonar and radar) has wide civil and military applications, for example underwater surveillance, air defence, wireless communications, and self-protection of military vehicles. These passive sensors are listening to target emitted signals without emitting signals themselves which give them concealing properties. Tactical scenarios exists where the own position shall not be revealed, e.g. for tracking submarines with passive sonar or tracking an aerial target by means of electro-optic image sensors like infrared sensors. This estimation process is widely known as bearings-only tracking. On the one hand, a challenge is the high degree of nonlinearity in the estimation process caused by the nonlinear relation of angular measurements to the Cartesian state. On the other hand, passive sensors cannot provide direct target location measurements, so bearings-only tracking suffers from poor target trajectory estimation accuracy due to marginal observability from sensor measurements. In order to achieve observability, that means to be able to estimate the complete target state, multiple passive sensor measurements must be fused. The measurements can be recorded spatially distributed by multiple dislocated sensor platforms or temporally distributed by a single, moving sensor platform. Furthermore, an extended case of bearings-only tracking is given if heterogeneous measurements from targets emitting different types of signals, are involved. With this, observability can also be achieved on a single, not necessarily moving platform. In this work, a performance bound for complex motion models, i.e. piecewisely maneuvering targets with unknown maneuver change times, by means of bearings-only measurements from a single, moving sensor platform is derived and an efficient estimator is implemented and analyzed. Furthermore, an observability analysis is carried out for targets emitting acoustic and electromagnetic signals. Here, the different signal propagation velocities can be exploited to ensure observability on a single, not necessarily moving platform. Based on the theoretical performance and observability analyses a distributed fusion system has been realized by means of heterogeneous sensors, which shall detect an event and localize a threat. This is performed by a microphone array to detect sound waves emitted by the threat as well as a radar detector that detects electromagnetic emissions from the threat. Since multiple platforms are involved to provide increased observability and also redundancy against possible breakdowns, a WiFi mobile ad hoc network is used for communications. In order to keep up the network in a breakdown OLSR (optimized link state routing) routing approach is employed

    Tracking the Tracker from its Passive Sonar ML-PDA Estimates

    Full text link
    Target motion analysis with wideband passive sonar has received much attention. Maximum likelihood probabilistic data-association (ML-PDA) represents an asymptotically efficient estimator for deterministic target motion, and is especially well-suited for low-observable targets; the results presented here apply to situations with higher signal to noise ratio as well, including of course the situation of a deterministic target observed via clean measurements without false alarms or missed detections. Here we study the inverse problem, namely, how to identify the observing platform (following a two-leg motion model) from the results of the target estimation process, i.e. the estimated target state and the Fisher information matrix, quantities we assume an eavesdropper might intercept. We tackle the problem and we present observability properties, with supporting simulation results.Comment: To appear in IEEE Transactions on Aerospace and Electronic System

    Stochastic Real-time Optimal Control for Bearing-only Trajectory Planning

    Get PDF
    A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire

    Stochastic Real-time Optimal Control: A Pseudospectral Approach for Bearing-Only Trajectory Optimization

    Get PDF
    A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is developed, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed with recursive updating of the target estimate with an Unscented Kalman Filter and the optimal path with Radau pseudospectral collocation methods and sequential quadratic programming. The basic real-time optimal control (RTOC) structure is investigated, specifically addressing limitations of current techniques in this area that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. Methods and tools required for implementation are developed, including variable calculation timing and tip-tail blending for potential discontinuities. Validation is accomplished with simulation and flight test, autonomously landing a quadrotor helicopter on a wire

    Adaptive sampling in autonomous marine sensor networks

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2006In this thesis, an innovative architecture for real-time adaptive and cooperative control of autonomous sensor platforms in a marine sensor network is described in the context of the autonomous oceanographic network scenario. This architecture has three major components, an intelligent, logical sensor that provides high-level environmental state information to a behavior-based autonomous vehicle control system, a new approach to behavior-based control of autonomous vehicles using multiple objective functions that allows reactive control in complex environments with multiple constraints, and an approach to cooperative robotics that is a hybrid between the swarm cooperation and intentional cooperation approaches. The mobility of the sensor platforms is a key advantage of this strategy, allowing dynamic optimization of the sensor locations with respect to the classification or localization of a process of interest including processes which can be time varying, not spatially isotropic and for which action is required in real-time. Experimental results are presented for a 2-D target tracking application in which fully autonomous surface craft using simulated bearing sensors acquire and track a moving target in open water. In the first example, a single sensor vehicle adaptively tracks a target while simultaneously relaying the estimated track to a second vehicle acting as a classification platform. In the second example, two spatially distributed sensor vehicles adaptively track a moving target by fusing their sensor information to form a single target track estimate. In both cases the goal is to adapt the platform motion to minimize the uncertainty of the target track parameter estimates. The link between the sensor platform motion and the target track estimate uncertainty is fully derived and this information is used to develop the behaviors for the sensor platform control system. The experimental results clearly illustrate the significant processing gain that spatially distributed sensors can achieve over a single sensor when observing a dynamic phenomenon as well as the viability of behavior-based control for dealing with uncertainty in complex situations in marine sensor networks.Supported by the Office of Naval Research, with a 3-year National Defense Science and Engineering Grant Fellowship and research assistantships through the Generic Ocean Array Technology Sonar (GOATS) project, contract N00014-97-1-0202 and contract N00014-05-G-0106 Delivery Order 008, PLUSNET: Persistent Littoral Undersea Surveillance Network

    Multistatic Tracking with the Maximum Likelihood Probabilistic Multi-Hypothesis Tracker

    Get PDF
    Multistatic sonar tracking is a difficult proposition. The ocean environment typically features very complex propagation conditions, causing low target probabilities of detection and high clutter levels. Additionally, most sonar targets are relatively low speed, which makes it difficult to use Doppler (if available) to separate target returns from clutter returns. The Maximum Likelihood Probabilistic Data Association Tracker (ML-PDA) and the Maximum Likelihood Probabilistic Multi-Hypothesis Tracker (ML-PMHT) --- a similar algorithm to ML-PDA --- can be implemented as effective multistatic trackers. This dissertation will develop a tracking framework for these algorithms. This framework will focus mainly on ML-PMHT, which has an inherent advantage in that its log-likelihood ratio (LLR) has a simple multitarget formulation, which allows it to be implemented as a true multitarget tracker. First, this multitarget LLR will be implemented for ML-PMHT, which will give it superior performance over ML-PDA for instances where multiple targets are closely spaced with similar motion dynamics. Next, the performance of ML-PMHT will be compared when it is applied in Cartesian measurement space and in delay-bearing measurement space, where the measurement covariance is more accurately represented. Following this, a maneuver-model parameterization will be introduced that will allow ML-PDA and ML-PMHT to follow sharply maneuvering targets; their previous straight-line parameterization only allowed them to follow moderately maneuvering targets. Finally, a novel method of determining a tracking threshold for ML-PMHT will be developed by applying extreme value theory to the probabilistic properties of the clutter. This will also be done with target measurements, which will allow the issue of trackability for ML-PMHT to be explored. Probabilistic expressions for the maximum values of the LLR surface caused by both clutter and the target will be developed, which will allow for the determination of target trackability in any given scenario

    Aeronautical Engineering. A continuing bibliography, supplement 115

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1979

    Tracking and Estimation Algorithms for Bearings Only Measurements

    No full text
    The Bearings-only tracking problem is to estimate the state of a moving object from noisy observations of its direction relative to a sensor. The Kalman filter, which provides least squares estimates for linear Gaussian filtering problems is not directly applicable because of the highly nonlinear measurement function of the state, representing the bearings measurements and so other types of filters must be considered. The shifted Rayleigh filter (SRF) is a highly effective moment-matching bearings-only tracking algorithm which has been shown, in 2D, to achieve the accuracy of computationally demanding particle filters in situations where the well-known extended Kalman filter and unscented Kalman filter often fail. This thesis has two principal aims. The first is to develop accurate and computationally efficient algorithms for bearings-only tracking in 3D space. We propose algorithms based on the SRF, that allow tracking, in the presence of clutter, of both nonmaneuvering and maneuvering targets. Their performances are assessed, in relation to competing methods, in highly challenging tracking scenarios, where they are shown to match the accuracy of high-order sophisticated particle filters, at a fraction of the computational cost. The second is to design accurate and consistent algorithms for bearings-only simultaneous localization and mapping (SLAM). The difficulty of this problem, originating from the uncertainty in the position and orientation of the sensor, and the absence of range information of observed landmarks, motivates the use of advanced bearings-only tracking algorithms. We propose the quadrature-SRF SLAM algorithm, which is a moment-matching filter based on the SRF, that numerically evaluates the exact mean and covariance of the posterior. Simulations illustrate the accuracy and consistency of its estimates in a situation where a widely used moment-matching algorithm fails to produce consistent estimates. We also propose a Rao-Blackwellized SRF implementation of a particle filter, which, however, does not exhibit favorable consistency properties

    Sequential Monte Carlo methods for multiple target tracking and data fusion

    Full text link
    • …
    corecore