279 research outputs found

    Performance Analysis of an EEMD-based Hilbert Huang Transform as a Bearing Failure Detector in Wind Turbines

    No full text
    International audienceSustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. The most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the degeneration of the generator health, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper deals then with the assessment of a demodulation technique for bearing failure detection through wind turbines generator stator current. The proposed technique is based on a modified version of the Hilbert Huang transform. In this version, the use of the EEMD algorithm allows overcoming the well-known mixed mode

    An Integrated Framework of Drivetrain Degradation Assessment and Fault Localization for Offshore Wind Turbines

    Get PDF
    As wind energy proliferates in onshore and offshore applications, it has become significantly important to predict wind turbine downtime and maintain operation uptime to ensure maximal yield. Two types of data systems have been widely adopted for monitoring turbine health condition: supervisory control and data acquisition (SCADA) and condition monitoring system (CMS). Provided that research and development have focused on advancing analytical techniques based on these systems independently, an intelligent model that associates information from both systems is necessary and beneficial. In this paper, a systematic framework is designed to integrate CMS and SCADA data and assess drivetrain degradation over its lifecycle. Information reference and advanced feature extraction techniques are employed to procure heterogeneous health indicators. A pattern recognition algorithm is used to model baseline behavior and measure deviation of current behavior, where a Self-organizing Map (SOM) and minimum quantization error (MQE) method is selected to achieve degradation assessment. Eventually, the computation and ranking of component contribution to the detected degradation offers component-level fault localization. When validated and automated by various applications, the approach is able to incorporate diverse data resources and output actionable information to advise predictive maintenance with precise fault information. The approach is validated on a 3 MW offshore turbine, where an incipient fault is detected well before existing system shuts down the unit. A radar chart is used to illustrate the fault localization result

    A Digital Triplet for Utilizing Offline Environments to Train Condition Monitoring Systems for Rolling Element Bearings

    Get PDF
    Manufacturing competitiveness is related to making a quality product while incurring the lowest costs. Unexpected downtime caused by equipment failure negatively impacts manufacturing competitiveness due to the ensuing defects and delays caused by the downtime. Manufacturers have adopted condition monitoring (CM) techniques to reduce unexpected downtime to augment maintenance strategies. The CM adoption has transitioned maintenance from Breakdown Maintenance (BM) to Condition-Based Maintenance (CbM) to anticipate impending failures and provide maintenance actions before equipment failure. CbM is the umbrella term for maintenance strategies that use condition monitoring techniques such as Preventive Maintenance (PM) and Predictive Maintenance (PdM). Preventive Maintenance involves providing periodic checks based on either time or sensory input. Predictive Maintenance utilizes continuous or periodic sensory inputs to determine the machine health state to predict the equipment failure. The overall goal of the work is to improve bearing diagnostic and prognostic predictions for equipment health by utilizing surrogate systems to generate failure data that represents production equipment failure, thereby providing training data for condition monitoring solutions without waiting for real world failure data. This research seeks to address the challenges of obtaining failure data for CM systems by incorporating a third system into monitoring strategies to create a Digital Triplet (DTr) for condition monitoring to increase the amount of possible data for condition monitoring. Bearings are a critical component in rotational manufacturing systems with wide application to other industries outside of manufacturing, such as energy and defense. The reinvented DTr system considers three components: the physical, surrogate, and digital systems. The physical system represents the real-world application in production that cannot fail. The surrogate system represents a physical component in a test system in an offline environment where data is generated to fill in gaps from data unavailable in the real-world system. The digital system is the CM system, which provides maintenance recommendations based on the ingested data from the real world and surrogate systems. In pursuing the research goal, a comprehensive bearing dataset detailing these four failure modes over different collection operating parameters was created. Subsequently, the collections occurred under different operating conditions, such as speed-varying, load-varying, and steadystate. Different frequency and time measures were used to analyze and identify differentiating criteria between the different failure classes over the differing operating conditions. These empirical observations were recreated using simulations to filter out potential outliers. The outputs of the physical model were combined with knowledge from the empirical observations to create ”spectral deltas” to augment existing bearing data and create new failure data that resemble similar frequency criteria to the original data. The primary verification occurred on a laboratory-bearing test stand. A conjecture is provided on how to scale to a larger system by analyzing a larger system from a local manufacturer. From the subsequent analysis of machine learning diagnosis and prognosis models, the original and augmented bearing data can complement each other during model training. The subsequent data substitution verifies that bearing data collected under different operating conditions and sizes can be substituted between different systems. Ostensibly, the full formulation of the digital triplet system is that bearing data generated at a smaller size can be scaled to train predictive failure models for larger bearing sizes. Future work should consider implementing this method for other systems outside of bearings, such as gears, non-rotational equipment, such as pumps, or even larger complex systems, such as computer numerically controlled machine tools or car engines. In addition, the method and process should not be restricted to only mechanical systems and could be applied to electrical systems, such as batteries. Furthermore, an investigation should consider further data-driven approximations to specific bearing characteristics related to the stiffness and damping parameters needed in modeling. A final consideration is for further investigation into the scalability quantities within the data and how to track these changes through different system levels

    Development of new fault detection methods for rotating machines (roller bearings)

    Get PDF
    Abstract Early fault diagnosis of roller bearings is extremely important for rotating machines, especially for high speed, automatic and precise machines. Many research efforts have been focused on fault diagnosis and detection of roller bearings, since they constitute one the most important elements of rotating machinery. In this study a combination method is proposed for early damage detection of roller bearing. Wavelet packet transform (WPT) is applied to the collected data for denoising and the resulting clean data are break-down into some elementary components called Intrinsic mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The normalized energy of three first IMFs are used as input for Support vector machine (SVM) to recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no robust guide to determine amplitude of added noise in EEMD technique, a new Performance improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A novel feature extraction method is also proposed for detecting small size defect using Teager-Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors as input data for one-class SVM. The results of applying the method to acceleration signals collected from an experimental bearing test rig demonstrated that the method can be successfully used for early damage detection of roller bearings. Most of the diagnostic methods that have been developed up to now can be applied for the case stationary working conditions only (constant speed and load). However, bearings often work at time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, vehicles, robots and all processes with run-up and run-down transients. Damage identification for bearings working under non-stationary operating conditions, especially for early/small defects, requires the use of appropriate techniques, which are generally different from those used for the case of stationary conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational condition variations. Some methods have been proposed for damage detection of bearings working under time-varying speed conditions. However, their application might increase the instrumentation cost because of providing a phase reference signal. Furthermore, some methods such as order tracking methods still can be applied when the speed variation is limited. In this study, a novel combined method based on cointegration is proposed for the development of fault features which are sensitive to the presence of defects while in the same time they are insensitive to changes in the operational conditions. It does not require any additional measurements and can identify defects even for considerable speed variations. The signals acquired during run-up condition are decomposed into IMFs using the performance improved EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are utilized to construct a separating hyperplane using one-class support vector machine. Eventually the proposed method was applied to vibration signals measured on an experimental bearing test rig. The results verified that the method can successfully distinguish between healthy and faulty bearings even if the shaft speed changes dramatically

    Rolling contact fatigue failures in silicon nitride and their detection

    No full text
    The project investigates the feasibility of using sensor-based detection and processing systems to provide a reliable means of monitoring rolling contact fatigue (RCF) wear failures of silicon nitride in hybrid bearings. To fulfil this investigation, a decision was made early in the project to perform a series of hybrid rolling wear tests using a twin disc machine modified for use on hybrid bearing elements.The initial part of the thesis reviews the current understanding of the general wear mechanisms and RCF with a specific focus to determine the appropriate methods for their detection in hybrid bearings. The study focusses on vibration, electrostatic and acoustic emission (AE) techniques and reviews their associated sensing technologies currently deployed with a view of adapting them for use in hybrids. To provide a basis for the adaptation, an understanding of the current sensor data enhancement and feature extraction methods is presented based on a literature review.The second part describes the test equipment, its modifications and instrumentation required to capture and process the vibration, electrostatic and AE signals generated in hybrid elements. These were identified in an initial feasibility test performed on a standard twin disc machine. After a detailed description of the resulting equipment, the thesis describes the calibration tests aimed to provide base data for the development of the signal processing methods.The development of the signal processing techniques is described in detail for each of the sensor types. Time synchronous averaging (TSA) technique is used to identify the location of the signal sources along the surfaces of the specimens and the signals are enhanced by additional filtering techniques.The next part of the thesis describes the main hybrid rolling wear tests; it details the selection of the run parameters and the samples seeded with surface cracks to cover a variety of situations, the method of execution of each test run, and the techniques to analyse the results.The research establishes that two RCF fault types are produced in the silicon nitride rolling element reflecting essentially different mechanisms in their distinct and separate development; i) cracks, progressing into depth and denoted in this study as C-/Ring crack Complex (CRC) and ii) Flaking, progressing primarily on the surface by spalls. Additionally and not reported in the literature, an advanced stage of the CRC fault type composed of multiple and extensive c-cracks is interpreted as the result of induced sliding in these runs. In general, having reached an advanced stage, both CRC and Flaking faults produce significant wear in the steel counterface through abrasion, plastic deformation or 3-body abrasion in at least three possible ways, all of which are described in details

    Advances in Sensors and Sensing for Technical Condition Assessment and NDT

    Get PDF
    The adequate assessment of key apparatus conditions is a hot topic in all branches of industry. Various online and offline diagnostic methods are widely applied to provide early detections of any abnormality in exploitation. Furthermore, different sensors may also be applied to capture selected physical quantities that may be used to indicate the type of potential fault. The essential steps of the signal analysis regarding the technical condition assessment process may be listed as: signal measurement (using relevant sensors), processing, modelling, and classification. In the Special Issue entitled “Advances in Sensors and Sensing for Technical Condition Assessment and NDT”, we present the latest research in various areas of technology

    A smart monitoring system for bearing fault detection

    Get PDF
    Rolling element bearings are commonly used in rotating machinery to support shafts, reduce friction, and increase power transmission efficiency. For a machinery system, bearing fault could be the most possible cause of mechanical failures. If bearing defect can be detected at its early stage, mechanical performance degradation and even economic losses can be avoided. Although many signal processing techniques have been proposed in the literature for bearing fault detection, reliable bearing fault diagnosis is still a challenging task in this R&D field, especially in industrial applications. The objective of this work is to develop a smart condition monitoring system and a signal processing technique for bearing fault detection. Firstly, a Field Programmable Gate Arrays (FPGA) based sinusoidal generator is developed to generate controllable sinusoidal waveforms and explore FPGA’s potential applications in a data acquisition system to collect vibration signals. Secondly, an adaptive variational mode decomposition (AVMD) technique is proposed for bearing fault detection. The AVMD includes several steps in processing: 1) Signal characteristics are analyzed to determine the signal center frequency and the related parameters. 2) The ensemble-kurtosis index is suggested to select the optimal intrinsic mode function (IMF) to decompose the target signal. 3) The envelope spectrum analysis is performed using the selected IMF to identify the representative features for bearing fault detection. The effectiveness of the proposed AVMD technique is examined by simulation and experimental tests under different bearing conditions, with the comparison of other related bearing fault techniques

    Enhancement of Condition Monitoring Information from the Control Data of Electrical Motors Based on Machine Learning Techniques

    Get PDF
    Centrifugal pumps are widely used in many manufacturing processes, including power plants, petrochemical industries, and water supplies. Failures in centrifugal pumps not only cause significant production interruptions but can be responsible for a large proportion of the maintenance budget. Early detection of such problems would provide timely information to take appropriate preventive actions. Currently, the motor current signature analysis (MCSA) is regarded to be a promising cost-effective condition monitoring technique for centrifugal pumps. However, conventional data analysis methods such as statistical and spectra parameters often fail to detect damage under different operating conditions, which can be attributed to the present, limited understandings of the fluctuations in current signals arising from the many different possible faults. These include the fluctuations due to changes in operating pressure and flow rate, electromagnetic interference, control accuracy and the measured signals themselves. These combine to make it difficult for conventional data analyses methods such as Fourier based analysis to accurately capture the necessary information to achieve high-performance diagnostics. Therefore, this study focuses on the improvement of data analysis through machine learning (ML) paradigms for promoting the performance of centrifugal pump monitoring. Within the paradigms, data characterisation methods such as empirical mode decomposition (EMD) and the intrinsic time-scale decomposition (ITD) reveal features based purely on the data, rather than finding pre-specified similarities to basic functions. With this data-driven approach, subtle changes are more likely to be captured and provide more effective and accurate fault detection and diagnosis. This study reports the application of two of the above data-driven approaches, using MCSA for a centrifugal pump operated under normal and abnormal conditions to detect faults seeded into the pump. The research study has shown that the use of the ITD and EMD signatures combined with envelope spectra of the current signals proved to be competent in detecting the presence of the centrifugal pump fault conditions under different flow rates. The successful analysis was able to produce a more accurate analysis of these abnormal conditions compared to conventional analytical methods. The effectiveness of these approaches is mainly due to the inclusion of high-frequency information, which is largely ignored by conventional MCSA. Finally, a comprehensive diagnostic approach is suggested based on the support vector machine (SVM) as a diagnosing method for three seeded centrifugal pump defects (two bearing defects and compound defect outer race fault with impeller blockage) under different flow rates. It is confirmed that this novel data-driven paradigm is effective for pump diagnostics. The proposed method based on a combined ITD and SVM technique for extracting meaningful features and distinguishing between seeded faults is significantly more effective and accurate for fault detection and diagnosis when compared with the results obtained from other means, such as envelope, EMD and discrete wavelet transform (DWT) based features

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations
    • 

    corecore