376 research outputs found

    Beamforming via large and dense antenna arrays above a clutter

    Get PDF
    Abstract — The paper sheds light on the beamforming (BF) performance of large (potentially unconstrained in size) as well as dense (but physically constrained in size) antenna arrays when equipped with arbitrarily many elements. Two operational modes are investigated: Single-layer BF and multi-layer BF. In the first mode, a realistic BF criterion namely the average BF gain is revisited and employed to understand the far-field and the near-field effects on the BF performance of large-scale antennas above a clutter. The diminishing throughput returns in a single-layer BF mode versus the number of antennas necessitate multi-layering. In the multi-layer BF mode, the RF coverage is divided into a number of directive non-overlapping sectorbeams in a deterministic manner within a multi-user multi-input multi-output (MIMO) system. The optimal number of layers that maximizes the user’s sum-rate given a constrained antenna array is found as a compromise between the multiplexing gain (associated with the number of sector-beams) and the inter-beam interference, represented by the side lobe level (SLL)

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Dealing with Interference in Distributed Large-scale MIMO Systems: A Statistical Approach

    Full text link
    This paper considers the problem of interference control through the use of second-order statistics in massive MIMO multi-cell networks. We consider both the cases of co-located massive arrays and large-scale distributed antenna settings. We are interested in characterizing the low-rankness of users' channel covariance matrices, as such a property can be exploited towards improved channel estimation (so-called pilot decontamination) as well as interference rejection via spatial filtering. In previous work, it was shown that massive MIMO channel covariance matrices exhibit a useful finite rank property that can be modeled via the angular spread of multipath at a MIMO uniform linear array. This paper extends this result to more general settings including certain non-uniform arrays, and more surprisingly, to two dimensional distributed large scale arrays. In particular our model exhibits the dependence of the signal subspace's richness on the scattering radius around the user terminal, through a closed form expression. The applications of the low-rankness covariance property to channel estimation's denoising and low-complexity interference filtering are highlighted.Comment: 12 pages, 11 figures, to appear in IEEE Journal of Selected Topics in Signal Processin

    Adaptive Illumination Patterns for Radar Applications

    Get PDF
    The fundamental goal of Fully Adaptive Radar (FAR) involves full exploitation of the joint, synergistic adaptivity of the radar\u27s transmitter and receiver. Little work has been done to exploit the joint space time Degrees-of-Freedom (DOF) available via an Active Electronically Steered Array (AESA) during the radar\u27s transmit illumination cycle. This research introduces Adaptive Illumination Patterns (AIP) as a means for exploiting this previously untapped transmit DOF. This research investigates ways to mitigate clutter interference effects by adapting the illumination pattern on transmit. Two types of illumination pattern adaptivity were explored, termed Space Time Illumination Patterns (STIP) and Scene Adaptive Illumination Patterns (SAIP). Using clairvoyant knowledge, STIP demonstrates the ability to remove sidelobe clutter at user specified Doppler frequencies, resulting in optimum receiver performance using a non-adaptive receive processor. Using available database knowledge, SAIP demonstrated the ability to reduce training data heterogeneity in dense target environments, thereby greatly improving the minimum discernable velocity achieved through STAP processing

    YOLO: An Efficient Terahertz Band Integrated Sensing and Communications Scheme with Beam Squint

    Full text link
    Using communications signals for dynamic target sensing is an important component of integrated sensing and communications (ISAC). In this paper, we propose to utilize the beam squint effect to realize fast non-cooperative dynamic target sensing in massive multiple input and multiple output (MIMO) Terahertz band communications systems. Specifically, we construct a wideband channel model of the echo signals, and design a beamforming strategy that controls the range of beam squint by adjusting the values of phase shifters and true time delay lines. With this design, beams at different subcarriers can be aligned along different directions in a planned way. Then the received echo signals at different subcarriers will carry target information in different directions, based on which the targets' angles can be estimated through sophisticatedly designed algorithm. Moreover, we propose a supporting method based on extended array signal estimation, which utilizes the phase changes of different frequency subcarriers within different OFDM symbols to estimate the distance and velocity of dynamic targets. Interestingly, the proposed sensing scheme only needs to transmit and receive the signals once, which can be termed as You Only Listen Once (YOLO). Compared with the traditional ISAC method that requires time consuming beam sweeping, the proposed one greatly reduces the sensing overhead. Simulation results are provided to demonstrate the effectiveness of the proposed scheme

    Massive MIMO is a reality - What is next? Five promising research directions for antenna arrays

    Get PDF
    Massive MIMO (multiple-input multiple-output) is no longer a “wild” or “promising” concept for future cellular networks—in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies—once viewed prohibitively complicated and costly—is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO
    • …
    corecore