278 research outputs found

    Beamforming for Magnetic Induction based Wireless Power Transfer Systems with Multiple Receivers

    Full text link
    Magnetic induction (MI) based communication and power transfer systems have gained an increased attention in the recent years. Typical applications for these systems lie in the area of wireless charging, near-field communication, and wireless sensor networks. For an optimal system performance, the power efficiency needs to be maximized. Typically, this optimization refers to the impedance matching and tracking of the split-frequencies. However, an important role of magnitude and phase of the input signal has been mostly overlooked. Especially for the wireless power transfer systems with multiple transmitter coils, the optimization of the transmit signals can dramatically improve the power efficiency. In this work, we propose an iterative algorithm for the optimization of the transmit signals for a transmitter with three orthogonal coils and multiple single coil receivers. The proposed scheme significantly outperforms the traditional baseline algorithms in terms of power efficiency.Comment: This paper has been accepted for presentation at IEEE GLOBECOM 2015. It has 7 pages and 5 figure

    On Reliability of Underwater Magnetic Induction Communications with Tri-Axis Coils

    Full text link
    Underwater magnetic induction communications (UWMICs) provide a low-power and high-throughput solution for autonomous underwater vehicles (AUVs), which are envisioned to explore and monitor the underwater environment. UWMIC with tri-axis coils increases the reliability of the wireless channel by exploring the coil orientation diversity. However, the UWMIC channel is different from typical fading channels and the mutual inductance information (MII) is not always available. It is not clear the performance of the tri-axis coil MIMO without MII. Also, its performances with multiple users have not been investigated. In this paper, we analyze the reliability and multiplexing gain of UWMICs with tri-axis coils by using coil selection. We optimally select the transmit and receive coils to reduce the computation complexity and power consumption and explore the diversity for multiple users. We find that without using all the coils and MII, we can still achieve reliability. Also, the multiplexing gain of UWMIC without MII is 5dB smaller than typical terrestrial fading channels. The results of this paper provide a more power-efficient way to use UWMICs with tri-axis coils

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    Wireless information and power transfer: from scientific hypothesis to engineering practice

    No full text
    Recently, there has been substantial research interest in the subject of Simultaneous Wireless Information andPower Transfer (SWIPT) owing to its cross-disciplinary appeal and its wide-ranging application potential, whichmotivates this overview. More explicitly, we provide a brief survey of the state-of-the-art and introduce severalpractical transceiver architectures that may facilitate its implementation. Moreover, the most important link-levelas well as system-level design aspects are elaborated on, along with a variety of potential solutions and researchideas. We envision that the dual interpretation of Radio Frequency (RF) signals creates new opportunities as wellas challenges requiring substantial research, innovation and engineering efforts
    corecore