122 research outputs found

    Beamforming and Multiuser Detection in CDMA Systems with External Interferences

    Get PDF
    Multiuser detection has been investigated to mitigate the near-far effect in CDMA systems. Antenna arrays have been shown to provide spatial diversity and cancel undesired signals. In this paper we consider the synergy of both multiuser detection and antenna arrays for the base station of a CDMA system. The receiver we proposed consists of the known multiuser decorrelator, which cancels multiple-access interferences followed by a beamformer for each user, which cancels the external interferences. This receiver adds an extra branch to the decorrelator. This additional branch, corresponding to a fictitious user with an unused code and zero power, allows to estimate the external interference signal subspace and compute a suitable beamforming weight-vector that cancels the external interferences. The receiver is also extended to the asynchronous case and all of this without any training signal or any a priori spatial information.Peer ReviewedPostprint (published version

    Multiuser Coding and Signal Processing in a Low Power Sensor Network

    Get PDF
    Backscatter communication system is a wireless communication system that is used by both academic community and industry circles in recent years. This communication system only requires ultra-low power usage and simple design of the sensors. This project is using backscatter communication system to transmit data with backscatter tags. The method we used is semi-passive backscatter communication. This project focuses on transmitting signals with multiple sensors so there is a problem about distinguishing the signal reflected by different nodes. We modulated the transmitting digital signal with Walsh function to solve the problem of separating the signals between different nodes. By using spread sequences we have interferences between different signals from each node and also from the bouncing and direct path signals. We want to estimate the channel between the sensors to suppress the effect of the interferences. In addition, to make the system more practical with multiple usages and applications, we made the receiver and the illuminator on a moving platform. With this dynamic system it is important to deal with the interference of bouncing signals by analyzing the Doppler shift of received signal. With these approaches the purpose of this project is having the reader of the sensor network to communicate with multiple nodes with backscatter communication. This system can be used on variety of applications such as environmental sensing, signal recording and data communicating with less power usage compared with traditional communication systems. Advisor: Andrew Harm

    An Optimization Theoretical Framework for Resource Allocation over Wireless Networks

    Get PDF
    With the advancement of wireless technologies, wireless networking has become ubiquitous owing to the great demand of pervasive mobile applications. Some fundamental challenges exist for the next generation wireless network design such as time varying nature of wireless channels, co-channel interferences, provisioning of heterogeneous type of services, etc. So how to overcome these difficulties and improve the system performance have become an important research topic. Dynamic resource allocation is a general strategy to control the interferences and enhance the performance of wireless networks. The basic idea behind dynamic resource allocation is to utilize the channel more efficiently by sharing the spectrum and reducing interference through optimizing parameters such as the transmitting power, symbol transmission rate, modulation scheme, coding scheme, bandwidth, etc. Moreover, the network performance can be further improved by introducing diversity, such as multiuser, time, frequency, and space diversity. In addition, cross layer approach for resource allocation can provide advantages such as low overhead, more efficiency, and direct end-to-end QoS provision. The designers for next generation wireless networks face the common problem of how to optimize the system objective under the user Quality of Service (QoS) constraint. There is a need of unified but general optimization framework for resource allocation to allow taking into account a diverse set of objective functions with various QoS requirements, while considering all kinds of diversity and cross layer approach. We propose an optimization theoretical framework for resource allocation and apply these ideas to different network situations such as: 1.Centralized resource allocation with fairness constraint 2.Distributed resource allocation using game theory 3.OFDMA resource allocation 4.Cross layer approach On the whole, we develop a universal view of the whole wireless networks from multiple dimensions: time, frequency, space, user, and layers. We develop some schemes to fully utilize the resources. The success of the proposed research will significantly improve the way how to design and analyze resource allocation over wireless networks. In addition, the cross-layer optimization nature of the problem provides an innovative insight into vertical integration of wireless networks

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version

    Design and Analysis of a Dynamic Space-Code Multiple Access with Large Area Synchronous Scheme Using the Smart Antenna System

    Get PDF
    The most important property in wireless systems, when it comes to increase the system capacity and spectrum efficiency, is eliminating interference. Code Division Multiple Access (CDMA) is considered interference-limited system. Spatial filtering using smart antenna has emerged as a promising technique to improve the performance of cellular communication systems; hence, Space Division Multiple Access (SDMA) has recently received increasing interest in improving the performance of wireless systems. These interference-limited systems are susceptible to time of arrival (TOA) and angle of arrival (AOA) of individual user signals, thus, a non-uniform traffic can severely degrade the performance of CDMA and SDMA systems. In this thesis, new approach of the joint multiple access system arising from the combination of CDMA and SDMA systems is designed, and its system performances are then investigated. An innovative approach to eliminate the existing interferences in this joint multiple access system is proposed. The spreading sequences of Large Area Synchronous Even Ternary (LAS-ET) which exhibited an interference free window (IFW) in their correlation are exploited here. The spatial signature from smart antenna narrower beam is exploited to drive all the multipath propagation signals to arrive within the IFW in reverse link transmission. The size of IFW is adaptable with the size of smart antenna beamwidth through dynamic space code (DSC) algorithm. Hence, this double signatures scheme forms a novel multiple access scheme called Dynamic Space Code Multiple Access (DSCMA) system. From the nature of spatial filtering of smart antenna systems, a dynamic sequence reuse assignment is possible in DSCMA to increase its spectrum efficiency. The non-zero pulse intervals and sequence length of LAS-ET are arranged in even numbers which has demonstrated some performance improvements in ternary phase shift keying (TPSK) signalling. On the other hand, the combined spreading sequence and spatial signature scheme also prompts a possibility of developing a novel Space Division Duplexing (SDD) scheme. The reverse and forward links are transmitted within a narrower beam of smart antenna, and both links are distinguished by different LAS-ET sequences. The simulation results indicate that the reverse link system capacity in DSCMA using LAS-ET spreading sequences together with smart antenna system is increased dramatically compared to traditional binary spreading sequences. The results also showed that the spectrum efficiency of DSCMA is increased when the number of elements in smart antenna system is increased. Finally, it can be concluded that the system capacity and spectrum efficiency are increased significantly from DSCMA using smart antenna systems due to its perfect interference cancellation scheme

    ML estimator and hybrid beamformer for multipath and interference mitigation in GNSS receivers

    Get PDF
    This paper addresses the estimation of the code-phase(pseudorange) and the carrier-phase of the direct signal received from a direct-sequence spread-spectrum satellite transmitter. The signal is received by an antenna array in a scenario with interference and multipath propagation. These two effects are generally the limiting error sources in most high-precision positioning applications. A new estimator of the code- and carrier-phases is derived by using a simplified signal model and the maximum likelihood (ML) principle. The simplified model consists essentially of gathering all signals, except for the direct one, in a component with unknown spatial correlation. The estimator exploits the knowledge of the direction-of-arrival of the direct signal and is much simpler than other estimators derived under more detailed signal models. Moreover, we present an iterative algorithm, that is adequate for a practical implementation and explores an interesting link between the ML estimator and a hybrid beamformer. The mean squared error and bias of the new estimator are computed for a number of scenarios and compared with those of other methods. The presented estimator and the hybrid beamforming outperform the existing techniques of comparable complexity and attains, in many situations, the Cramér–Rao lower bound of the problem at hand.Peer Reviewe
    corecore