12 research outputs found

    Multimodal methods for blind source separation of audio sources

    Get PDF
    The enhancement of the performance of frequency domain convolutive blind source separation (FDCBSS) techniques when applied to the problem of separating audio sources recorded in a room environment is the focus of this thesis. This challenging application is termed the cocktail party problem and the ultimate aim would be to build a machine which matches the ability of a human being to solve this task. Human beings exploit both their eyes and their ears in solving this task and hence they adopt a multimodal approach, i.e. they exploit both audio and video modalities. New multimodal methods for blind source separation of audio sources are therefore proposed in this work as a step towards realizing such a machine. The geometry of the room environment is initially exploited to improve the separation performance of a FDCBSS algorithm. The positions of the human speakers are monitored by video cameras and this information is incorporated within the FDCBSS algorithm in the form of constraints added to the underlying cross-power spectral density matrix-based cost function which measures separation performance. [Continues.

    New Negentropy Optimization Schemes for Blind Signal Extraction of Complex Valued Sources

    Get PDF
    Blind signal extraction, a hot issue in the field of communication signal processing, aims to retrieve the sources through the optimization of contrast functions. Many contrasts based on higher-order statistics such as kurtosis, usually behave sensitive to outliers. Thus, to achieve robust results, nonlinear functions are utilized as contrasts to approximate the negentropy criterion, which is also a classical metric for non-Gaussianity. However, existing methods generally have a high computational cost, hence leading us to address the problem of efficient optimization of contrast function. More precisely, we design a novel “reference-based” contrast function based on negentropy approximations, and then propose a new family of algorithms (Alg.1 and Alg.2) to maximize it. Simulations confirm the convergence of our method to a separating solution, which is also analyzed in theory. We also validate the theoretic complexity analysis that Alg.2 has a much lower computational cost than Alg.1 and existing optimization methods based on negentropy criterion. Finally, experiments for the separation of single sideband signals illustrate that our method has good prospects in real-world applications

    Acoustics - Spatial properties

    Get PDF
    International audienceIn Chapter 2, we presented the spectral properties of sound sources which can be exploited for the separation or enhancement of single-channel signals. In multichannel scenarios, the fact the acoustic scene is observed from different positions in space can also be exploited. In this chapter, we recall basic elements of acoustics and sound engineering, and use them to model multichannel mixtures. We consider the relationship between a source signal and its spatial image in a given channel in Section 3.1, and examine how it translates in the case of microphone recordings or artificial mixtures in Sections 3.2 and 3.3, respectively. We then introduce several possible models in Section 3.4. We summarize the main concepts and provide links to other chapters and more advanced topics in Section 3.5

    Blind Signal Separation for Digital Communication Data

    Get PDF
    to appear in EURASIP E-reference in Signal Processing, invited paper.International audienceBlind source separation, often called independent component analysis , is a main field of research in signal processing since the eightees. It consists in retrieving the components, up to certain indeterminacies, of a mixture involving statistically independent signals. Solid theoretical results are known; besides, they have given rise to performent algorithms. There are numerous applications of blind source separation. In this contribution, we particularize the separation of telecommunication sources. In this context, the sources stem from telecommunication devices transmitting at the same time in a given band of frequencies. The received data is a mixed version of all these sources. The aim of the receiver is to isolate (separate) the different contributions prior to estimating the unknown parameters associated with a transmitter. The context of telecommunication signals has the particularity that the sources are not stationary but cyclo-stationary. Now, in general, the standard methods of blind source separation assume the stationarity of the sources. In this contribution , we hence make a survey of the well-known methods and show how the results extend to cyclo-stationary sources

    Online Audio-Visual Multi-Source Tracking and Separation: A Labeled Random Finite Set Approach

    Get PDF
    The dissertation proposes an online solution for separating an unknown and time-varying number of moving sources using audio and visual data. The random finite set framework is used for the modeling and fusion of audio and visual data. This enables an online tracking algorithm to estimate the source positions and identities for each time point. With this information, a set of beamformers can be designed to separate each desired source and suppress the interfering sources
    corecore