53 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Coexistence of MIMO Radar and FD MIMO Cellular Systems with QoS Considerations

    Get PDF
    In this work, the feasibility of spectrum sharing between a multiple-input multiple-output (MIMO) radar system (RS) and a MIMO cellular system (CS), comprising of a full duplex (FD) base station (BS) serving multiple downlink and uplink users at the same time and frequency is investigated. While a joint transceiver design technique at the CS's BS and users is proposed to maximise the probability of detection (PoD) of the MIMO RS, subject to constraints of quality of service (QoS) of users and transmit power at the CS, null-space based waveform projection is used to mitigate the interference from RS towards CS. In particular, the proposed technique optimises the performance of PoD of RS by maximising its lower bound, which is obtained by exploiting the monotonically increasing relationship of PoD and its non-centrality parameter. Numerical results show the utility of the proposed spectrum sharing framework, but with certain trade-offs in performance corresponding to RS's transmit power, RS's PoD, CS's residual self interference power at the FD BS and QoS of users

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Optimized Precoders for Massive MIMO OFDM Dual Radar-Communication Systems

    Get PDF
    This paper considers the optimization of a dual-functional radar and communication (RadCom) system with the objective is to maximize its sum-rate (SR) and energy-efficiency (EE) while satisfying certain radar target detection and data rate per user requirements. To this end, novel RadCom precoder schemes that can exploit downlink radar interference are devised for massive multiple-input-multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems. First, the communication capacity and radar detection performance metrics of these schemes are analytically evaluated. Then, using the derived results, optimum beam power allocation schemes are deduced to maximize SR and EE with modest computational complexity. The validity of the analytical results is confirmed via matching computer simulations. It is also shown that, compared to benchmark techniques, the devised precoders can achieve substantial improvements in terms of both SR and EE
    corecore