869 research outputs found

    Optimization of Training and Feedback Overhead for Beamforming over Block Fading Channels

    Full text link
    We examine the capacity of beamforming over a single-user, multi-antenna link taking into account the overhead due to channel estimation and limited feedback of channel state information. Multi-input single-output (MISO) and multi-input multi-output (MIMO) channels are considered subject to block Rayleigh fading. Each coherence block contains LL symbols, and is spanned by TT training symbols, BB feedback bits, and the data symbols. The training symbols are used to obtain a Minimum Mean Squared Error estimate of the channel matrix. Given this estimate, the receiver selects a transmit beamforming vector from a codebook containing 2B2^B {\em i.i.d.} random vectors, and sends the corresponding BB bits back to the transmitter. We derive bounds on the beamforming capacity for MISO and MIMO channels and characterize the optimal (rate-maximizing) training and feedback overhead (TT and BB) as LL and the number of transmit antennas NtN_t both become large. The optimal NtN_t is limited by the coherence time, and increases as L/logLL/\log L. For the MISO channel the optimal T/LT/L and B/LB/L (fractional overhead due to training and feedback) are asymptotically the same, and tend to zero at the rate 1/logNt1/\log N_t. For the MIMO channel the optimal feedback overhead B/LB/L tends to zero faster (as 1/log2Nt1/\log^2 N_t).Comment: accepted for IEEE Trans. Info. Theory, 201

    Linear Beamforming for the Spatially Correlated MISO broadcast channel

    Full text link
    A spatially correlated broadcast setting with M antennas at the base station and M users (each with a single antenna) is considered. We assume that the users have perfect channel information about their links and the base station has only statistical information about each user's link. The base station employs a linear beamforming strategy with one spatial eigen-mode allocated to each user. The goal of this work is to understand the structure of the beamforming vectors that maximize the ergodic sum-rate achieved by treating interference as noise. In the M = 2 case, we first fix the beamforming vectors and compute the ergodic sum-rate in closed-form as a function of the channel statistics. We then show that the optimal beamforming vectors are the dominant generalized eigenvectors of the covariance matrices of the two links. It is difficult to obtain intuition on the structure of the optimal beamforming vectors for M > 2 due to the complicated nature of the sum-rate expression. Nevertheless, in the case of asymptotic M, we show that the optimal beamforming vectors have to satisfy a set of fixed-point equations.Comment: Published in IEEE ISIT 2010, 5 page

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Exploiting Multi-Antennas for Opportunistic Spectrum Sharing in Cognitive Radio Networks

    Full text link
    In cognitive radio (CR) networks, there are scenarios where the secondary (lower priority) users intend to communicate with each other by opportunistically utilizing the transmit spectrum originally allocated to the existing primary (higher priority) users. For such a scenario, a secondary user usually has to trade off between two conflicting goals at the same time: one is to maximize its own transmit throughput; and the other is to minimize the amount of interference it produces at each primary receiver. In this paper, we study this fundamental tradeoff from an information-theoretic perspective by characterizing the secondary user's channel capacity under both its own transmit-power constraint as well as a set of interference-power constraints each imposed at one of the primary receivers. In particular, this paper exploits multi-antennas at the secondary transmitter to effectively balance between spatial multiplexing for the secondary transmission and interference avoidance at the primary receivers. Convex optimization techniques are used to design algorithms for the optimal secondary transmit spatial spectrum that achieves the capacity of the secondary transmission. Suboptimal solutions for ease of implementation are also presented and their performances are compared with the optimal solution. Furthermore, algorithms developed for the single-channel transmission are also extended to the case of multi-channel transmission whereby the secondary user is able to achieve opportunistic spectrum sharing via transmit adaptations not only in space, but in time and frequency domains as well.Comment: Extension of IEEE PIMRC 2007. 35 pages, 6 figures. Submitted to IEEE Journal of Special Topics in Signal Processing, special issue on Signal Processing and Networking for Dynamic Spectrum Acces

    Optimized Training Design for Wireless Energy Transfer

    Full text link
    Radio-frequency (RF) enabled wireless energy transfer (WET), as a promising solution to provide cost-effective and reliable power supplies for energy-constrained wireless networks, has drawn growing interests recently. To overcome the significant propagation loss over distance, employing multi-antennas at the energy transmitter (ET) to more efficiently direct wireless energy to desired energy receivers (ERs), termed \emph{energy beamforming}, is an essential technique for enabling WET. However, the achievable gain of energy beamforming crucially depends on the available channel state information (CSI) at the ET, which needs to be acquired practically. In this paper, we study the design of an efficient channel acquisition method for a point-to-point multiple-input multiple-output (MIMO) WET system by exploiting the channel reciprocity, i.e., the ET estimates the CSI via dedicated reverse-link training from the ER. Considering the limited energy availability at the ER, the training strategy should be carefully designed so that the channel can be estimated with sufficient accuracy, and yet without consuming excessive energy at the ER. To this end, we propose to maximize the \emph{net} harvested energy at the ER, which is the average harvested energy offset by that used for channel training. An optimization problem is formulated for the training design over MIMO Rician fading channels, including the subset of ER antennas to be trained, as well as the training time and power allocated. Closed-form solutions are obtained for some special scenarios, based on which useful insights are drawn on when training should be employed to improve the net transferred energy in MIMO WET systems.Comment: 30 pages, 9 figures, to appear in IEEE Trans. on Communication
    corecore