54 research outputs found

    Picture-Based Multiple-AntennaTechnique for the DVB-T2 Receiver

    Get PDF
    Deep-fading can decline the quality of the received signal to below threshold, and interrupts the reception-success (generating an outage or time-out). In DVB-T2 (Digital Video Broadcasting Terrestrial Second Generation) receiver, such interruption can be identified from the displayed-picture. Multiple-antenna is one of techniques to mitigate such problem. This paper presents a multiple-antenna method for receiving the DVB-T2 signal. At any time, one of antennas is selected where the selection action is controlled by the recovered-picture. In case of using two antennas, field-measurement was conducted to collect the real data, later used in the simulation of the proposed algorithm. The result showed its capability to increase the portion of cumulative reception-success duration up to approximately 1.53 times with respect to its equivalent single-antenna

    DVB-NGH: the Next Generation of Digital Broadcast Services to Handheld Devices

    Full text link
    This paper reviews the main technical solutions adopted by the next-generation mobile broadcasting standard DVB-NGH, the handheld evolution of the second-generation digital terrestrial TV standard DVB-T2. The main new technical elements introduced with respect to DVB-T2 are: layered video coding with multiple physical layer pipes, time-frequency slicing, full support of an IP transport layer with a dedicated protocol stack, header compression mechanisms for both IP and MPEG-2 TS packets, new low-density parity check coding rates for the data path (down to 1/5), nonuniform constellations for 64 Quadrature Amplitude Modulation (QAM) and 256QAM, 4-D rotated constellations for Quadrature Phase Shift Keying (QPSK), improved time interleaving in terms of zapping time, end-to-end latency and memory consumption, improved physical layer signaling in terms of robustness, capacity and overhead, a novel distributed multiple input single output transmit diversity scheme for single-frequency networks (SFNs), and efficient provisioning of local content in SFNs. All these technological solutions, together with the high performance of DVB-T2, make DVB-NGH a real next-generation mobile multimedia broadcasting technology. In fact, DVB-NGH can be regarded the first third-generation broadcasting system because it allows for the possibility of using multiple input multiple output antenna schemes to overcome the Shannon limit of single antenna wireless communications. Furthermore, DVB-NGH also allows the deployment of an optional satellite component forming a hybrid terrestrial-satellite network topology to improve the coverage in rural areas where the installation of terrestrial networks could be uneconomical.Gómez Barquero, D.; Douillard, C.; Moss, P.; Mignone, V. (2014). DVB-NGH: the Next Generation of Digital Broadcast Services to Handheld Devices. IEEE Transactions on Broadcasting. 60(2):246-257. doi:10.1109/TBC.2014.2313073S24625760

    Design of a Novel Antenna Array Beamformer Using Neural Networks Trained by Modified Adaptive Dispersion Invasive Weed Optimization Based Data

    Get PDF
    A new antenna array beamformer based on neural networks (NNs) is presented. The NN training is performed by using optimized data sets extracted by a novel Invasive Weed Optimization (IWO) variant called Modified Adaptive Dispersion IWO (MADIWO). The trained NN is utilized as an adaptive beamformer that makes a uniform linear antenna array steer the main lobe towards a desired signal, place respective nulls towards several interference signals and suppress the side lobe level (SLL). Initially, the NN structure is selected by training several NNs of various structures using MADIWO based data and by making a comparison among the NNs in terms of training performance. The selected NN structure is then used to construct an adaptive beamformer, which is compared to MADIWO based and ADIWO based beamformers, regarding the SLL as well as the ability to properly steer the main lobe and the nulls. The comparison is made considering several sets of random cases with different numbers of interference signals and different power levels of additive zero-mean Gaussian noise. The comparative results exhibit the advantages of the proposed beamformer

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore