67 research outputs found

    Spherical Wavefront Near-Field DoA Estimation in THz Automotive Radar

    Full text link
    Automotive radar at terahertz (THz) band has the potential to provide compact design. The availability of wide bandwidth at THz-band leads to high range resolution. Further, very narrow beamwidth arising from large arrays yields high angular resolution up to milli-degree level direction-of-arrival (DoA) estimation. At THz frequencies and extremely large arrays, the signal wavefront is spherical in the near-field that renders traditional far-field DoA estimation techniques unusable. In this work, we examine near-field DoA estimation for THz automotive radar. We propose an algorithm using multiple signal classification (MUSIC) to estimate target DoAs and ranges while also taking beam-squint in near-field into account. Using an array transformation approach, we compensate for near-field beam-squint in noise subspace computations to construct the beam-squint-free MUSIC spectra. Numerical experiments show the effectiveness of the proposed method to accurately estimate the target parameters

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Communication Networks in CubeSat Constellations: Analysis, Design and Implementation

    Get PDF
    CubeSat constellations are redefining the way we approach to space missions, from the particular impact on scientific mission possibilities, constellations potential is growing with the increasing accessibility in terms of low development and launch costs and higher performances of the available technologies for CubeSats. In this thesis we focus on communication networks in CubeSat constellations: the project consist of developing a clustering algorithm able to group small satellites in order to create an optimized communication network by considering problems related to mutual access time and communication capabilities we reduce the typical negative effects of clustering algorithms such as ripple effect of re-clustering and optimizing the cluster-head formation number. The network creation is exploited by our proposed hardware system, composed by a phased array with up to 10dB gain, managed by a beamforming algorithm, to increase the total data volume transferable from a CubeSat constellation to the ground station. The total data volume earned vary from 40% to a peak of 99% more, depending on the constellation topology analyzed

    Analytical evaluation of uncertainty on active antenna arrays

    Get PDF
    An analytical method for evaluating the uncertainty of the performance of active antenna arrays in the whole spatial spectrum is presented. Since array processing algorithms based on spatial reference are widely used to track moving targets, it is essential to be aware of the impact of the uncertainty sources on the antenna response. Furthermore, the estimation of the direction of arrival (DOA) depends on the array uncertainty. The aim of the uncertainties analysis is to provide an exhaustive characterization of the behavior of the active antenna array associated with its main uncertainty sources. The result of this analysis helps to select the proper calibration technique to be implemented. An illustrative example for a triangular antenna array used for satellite tracking is presented showing the suitability of the proposed method to carry out an efficient characterization of an active antenna array

    Terahertz-Band Direction Finding With Beam-Split and Mutual Coupling Calibration

    Get PDF
    peer reviewedTerahertz (THz) band is currently envisioned as the key building block to achieving the future sixth generation (6G) wireless systems. The ultra-wide bandwidth and very narrow beamwidth of THz systems offer the next order of magnitude in user densities and multi-functional behavior. However, wide bandwidth results in a frequency-dependent beampattern causing the beams generated at different subcarriers split and point to different directions. Furthermore, mutual coupling degrades the system’s performance. This paper studies the compensation of both beam-split and mutual coupling for direction-of-arrival (DoA) estimation by modeling the beam-split and mutual coupling as an array imperfection. We propose a subspace-based approach using multiple signal classification with CalibRated for bEAam-split and Mutual coupling (CREAM-MUSIC) algorithm for this purpose. Via numerical simulations, we show the proposed CREAM-MUSIC approach accurately estimates the DoAs in the presence of beam-split and mutual coupling
    • …
    corecore