39 research outputs found

    60 GHz MAC Standardization: Progress and Way Forward

    Full text link
    Communication at mmWave frequencies has been the focus in the recent years. In this paper, we discuss standardization efforts in 60 GHz short range communication and the progress therein. We compare the available standards in terms of network architecture, medium access control mechanisms, physical layer techniques and several other features. Comparative analysis indicates that IEEE 802.11ad is likely to lead the short-range indoor communication at 60 GHz. We bring to the fore resolved and unresolved issues pertaining to robust WLAN connectivity at 60 GHz. Further, we discuss the role of mmWave bands in 5G communication scenarios and highlight the further efforts required in terms of research and standardization

    An Efficient Beam Training Technique for mmWave Communication Under NLoS Channel Conditions

    Get PDF

    Beam Based Stochastic Model of the Coverage Probability in 5G Millimeter Wave Systems

    Full text link
    Communications using frequency bands in the millimeter-wave range can play a key role in future generations of mobile networks. By allowing large bandwidth allocations, high carrier frequencies will provide high data rates to support the ever-growing capacity demand. The prevailing challenge at high frequencies is the mitigation of large path loss and link blockage effects. Highly directional beams are expected to overcome this challenge. In this paper, we propose a stochastic model for characterizing beam coverage probability. The model takes into account both line-of-sight and first-order non-line-of-sight reflections. We model the scattering environment as a stochastic process and we derive an analytical expression of the coverage probability for any given beam. The results derived are validated numerically and compared with simulations to assess the accuracy of the model

    Large-Scale Modeling and Cell-edge Coverage for Future HetNet Deployments

    Get PDF
    corecore