92 research outputs found

    Beam search heuristics for quadratic earliness and tardiness scheduling

    Get PDF
    In this paper, we present beam search heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, and no machine idle time. These heuristics include classic beam search procedures, as well as filtered and recovering algorithms. We consider three dispatching heuristics as evaluation functions, in order to analyse the effect of different rules on the performance of the beam search procedures. The computational results show that using better dispatching heuristics improves the effectiveness of the beam search algorithms. The performance of the several heuristics is similar for instances with low variability. For high variability instances, however, the detailed, filtered and recovering beam search procedures clearly outperform the best existing heuristic. The detailed beam search algorithm performs quite well, and is recommended for small to medium size instances. For larger instances, however, this procedure requires excessive computation times, and the recovering beam search algorithm then becomes the heuristic of choice.scheduling, heuristics, beam search, single machine, quadratic earliness, quadratic tardiness

    Beam search heuristics for the single machine scheduling problem with linear earliness and quadratic tardiness costs

    Get PDF
    In this paper, we consider the single machine scheduling problem with linear earliness and quadratic tardiness costs, and no machine idle time. We present heuristic algorithms based on the beam search technique. These algorithms include classic beam search procedures, as well as the filtered and recovering variants. Several dispatching rules are considered as evaluation functions, in order to analyse the effect of different rules on the effectiveness of the beam search algorithms. The computational results show that using better rules indeed improves the performance of the beam search heuristics. The detailed, filtered and recovering beam search procedures outperform the best existing heuristic. The best results are given by the recovering and detailed variants, which provide objective function values that are quite close to the optimum. For small to medium size instances, either of these procedures can be used. For larger instances, however, the detailed beam search algorithm requires excessive computation times, and the recovering beam search procedure then becomes the heuristic of choice.scheduling, single machine, linear earliness, quadratic tardiness, beam search, heuristics

    Greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness penalties

    Get PDF
    In this paper, we present greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, and no machine idle time. The several heuristic versions differ, on the one hand, on the strategies involved in the construction of the greedy randomized schedules. On the other hand, these versions also differ on whether they employ only a final improvement step, or perform a local search after each greedy randomized construction. The proposed heuristics were compared with existing procedures, as well as with optimum solutions for some instance sizes. The computational results show that the proposed procedures clearly outperform their underlying dispatching heuristic, and the best of these procedures provide results that are quite close to the optimum. The best of the proposed algorithms is the new recommended heuristic for large instances, as well as a suitable alternative to the best existing procedure for the larger of the middle size instances.scheduling, single machine, early/tardy, quadratic penalties, greedy randomized dispatching rules

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with Earliness and Tardiness Penalties

    Get PDF
    This paper presents a hybrid Genetic-Bees Algorithm based optimised solution for the single machine scheduling problem. The enhancement of the Bees Algorithm (BA) is conducted using the Genetic Algorithm's (GA's) operators during the global search stage. The proposed enhancement aims to increase the global search capability of the BA gradually with new additions. Although the BA has very successful implementations on various type of optimisation problems, it has found that the algorithm suffers from weak global search ability which increases the computational complexities on NP-hard type optimisation problems e.g. combinatorial/permutational type optimisation problems. This weakness occurs due to using a simple global random search operation during the search process. To reinforce the global search process in the BA, the proposed enhancement is utilised to increase exploration capability by expanding the number of fittest solutions through the genetical variations of promising solutions. The hybridisation process is realised by including two strategies into the basic BA, named as â\u80\u9creinforced global searchâ\u80\u9d and â\u80\u9cjumping functionâ\u80\u9d strategies. The reinforced global search strategy is the first stage of the hybridisation process and contains the mutation operator of the GA. The second strategy, jumping function strategy, consists of four GA operators as single point crossover, multipoint crossover, mutation and randomisation. To demonstrate the strength of the proposed solution, several experiments were carried out on 280 well-known single machine benchmark instances, and the results are presented by comparing to other well-known heuristic algorithms. According to the experiments, the proposed enhancements provides better capability to basic BA to jump from local minima, and GBA performed better compared to BA in terms of convergence and the quality of results. The convergence time reduced about 60% with about 30% better results for highly constrained jobs

    Technological-Knowledge Dynamics in Lab-Equipment Models of Quality Ladders

    Get PDF
    The Perpetual Inventory Model (PIM) assumes that, in each period, an arbitrary constant fraction of technological-knowledge stock is lost. By connecting the aggregate resource constraint with firms’ market value, we give a theoretical background to the PIM by showing that the technological-knowledge accumulation follows a dynamic process with an endogenous depreciation rate, which remains stable in steady state. Moreover, we relate different concepts of technological-knowledge used in the literature.endogenous growth, endogenous depreciation rate, Perpetual Inventory Model, technological-knowledge dynamics

    Stylized Facts and Other Empirical Evidence on Firm Dynamics, Business Cycle and Growth

    Get PDF
    In this paper, we bring together in a systematised fashion the scattered empirical evidence relating firm dynamics and both short-run and long-run macroeconomic dynamics. There are numerous studies that focus on firm-level data while controlling for macroeconomic conditions, which cover a considerable range of variables, industries and countries. From these studies it has emerged what is by now a rather robust set of empirical regularities, or stylized facts, about entry, exit, growth and the size distribution of firms. On the contrary, the literature that focus explicitly on the interplay between firm dynamics and the business cycle is roughly confined to the US experience and to the cyclical properties of firm entry and exit, whereas systematic studies about the relationship between firm dynamics and economic growth are almost non-existent whatsoever.empirical evidence, firm dynamics, business cycle, economic growth
    corecore