95 research outputs found

    Integrated Sensing and Communications with Joint Beam Squint and Beam Split for Massive MIMO

    Full text link
    Integrated sensing and communications (ISAC) has attracted tremendous attention for the future 6G wireless communication systems. To improve the transmission rates and sensing accuracy, massive multi-input multi-output (MIMO) technique is leveraged with large transmission bandwidth. However, the growing size of transmission bandwidth and antenna array results in the beam squint effect, which hampers the communications. Moreover, the time overhead of the traditional sensing algorithm is prohibitive for practical systems. In this paper, instead of alleviating the wideband beam squint effect, we take advantage of joint beam squint and beam split effect and propose a novel user directions sensing method integrated with massive MIMO orthogonal frequency division multiplexing (OFDM) systems. Specifically, with the beam squint effect, the BS utilizes the true-time-delay (TTD) lines to steer the beams of different OFDM subcarriers towards different directions simultaneously. The users feedback the subcarrier frequency with the maximum array gain to the BS. Then, the BS calculates the direction based on the subcarrier frequency feedback. Futhermore, the beam split effect introduced by enlarging the inter-antenna spacing is exploited to expand the sensing range. The proposed sensing method operates over frequency-domain, and the intended sensing range is covered by all the subcarriers simultaneously, which reduces the time overhead of the conventional sensing significantly. Simulation results have demonstrated the effectiveness as well as the superior performance of the proposed ISAC scheme.Comment: 13 pages, 11 figures, submitted to IEEE journa

    Time-Domain Channel Estimation for Extremely Large MIMO THz Communications with Beam Squint

    Full text link
    In this paper, we study the problem of extremely large (XL) multiple-input multiple-output (MIMO) channel estimation in the Terahertz (THz) frequency band, considering the presence of propagation delays across the entire array apertures, which leads to frequency selectivity, a problem known as beam squint. Multi-carrier transmission schemes which are usually deployed to address this problem, suffer from high peak-to-average power ratio, which is specifically dominant in THz communications where low transmit power is realized. Diverging from the usual approach, we devise a novel channel estimation problem formulation in the time domain for single-carrier (SC) modulation, which favors transmissions in THz, and incorporate the beam-squint effect in a sparse vector recovery problem that is solved via sparse optimization tools. In particular, the beam squint and the sparse MIMO channel are jointly tracked by using an alternating minimization approach that decomposes the two estimation problems. The presented performance evaluation results validate that the proposed SC technique exhibits superior performance than the conventional one as well as than state-of-the-art multi-carrier approaches

    YOLO: An Efficient Terahertz Band Integrated Sensing and Communications Scheme with Beam Squint

    Full text link
    Using communications signals for dynamic target sensing is an important component of integrated sensing and communications (ISAC). In this paper, we propose to utilize the beam squint effect to realize fast non-cooperative dynamic target sensing in massive multiple input and multiple output (MIMO) Terahertz band communications systems. Specifically, we construct a wideband channel model of the echo signals, and design a beamforming strategy that controls the range of beam squint by adjusting the values of phase shifters and true time delay lines. With this design, beams at different subcarriers can be aligned along different directions in a planned way. Then the received echo signals at different subcarriers will carry target information in different directions, based on which the targets' angles can be estimated through sophisticatedly designed algorithm. Moreover, we propose a supporting method based on extended array signal estimation, which utilizes the phase changes of different frequency subcarriers within different OFDM symbols to estimate the distance and velocity of dynamic targets. Interestingly, the proposed sensing scheme only needs to transmit and receive the signals once, which can be termed as You Only Listen Once (YOLO). Compared with the traditional ISAC method that requires time consuming beam sweeping, the proposed one greatly reduces the sensing overhead. Simulation results are provided to demonstrate the effectiveness of the proposed scheme
    • …
    corecore