37 research outputs found

    Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios

    Get PDF
    A review of technological solutions and advances in the framework of a Vertical Heterogeneous Network (VHetNet) integrating satellite, airborne and terrestrial networks is presented. The disruptive features and challenges offered by a fruitful cooperation among these segments within a ubiquitous and seamless wireless connectivity are described. The available technologies and the key research directions for achieving global wireless coverage by considering all these layers are thoroughly discussed. Emphasis is placed on the available antenna systems in satellite, airborne and ground layers by highlighting strengths and weakness and by providing some interesting trends in research. A summary of the most suitable applicative scenarios for future 6G wireless communications are finally illustrated

    Towards Adaptive, Self-Configuring Networked Unmanned Aerial Vehicles

    Get PDF
    Networked drones have the potential to transform various applications domains; yet their adoption particularly in indoor and forest environments has been stymied by the lack of accurate maps and autonomous navigation abilities in the absence of GPS, the lack of highly reliable, energy-efficient wireless communications, and the challenges of visually inferring and understanding an environment with resource-limited individual drones. We advocate a novel vision for the research community in the development of distributed, localized algorithms that enable the networked drones to dynamically coordinate to perform adaptive beam forming to achieve high capacity directional aerial communications, and collaborative machine learning to simultaneously localize, map and visually infer the challenging environment, even when individual drones are resource-limited in terms of computation and communication due to payload restrictions

    Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey

    Get PDF
    Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting their relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G ecosystem. We discuss important features of NTNs integration into TNs and the synergies by delving into the new range of services and use cases, various architectures, technological enablers, and higher layer aspects pertinent to NTNs integration. Moreover, we review the corresponding challenges arising from the technical peculiarities and the new approaches being adopted to develop efficient integrated ground-air-space (GAS) networks. Our survey further includes the major progress and outcomes from academic research as well as industrial efforts representing the main industrial trends, field trials, and prototyping towards the 6G networks

    Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey

    Get PDF
    Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting their relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G ecosystem. We discuss important features of NTNs integration into TNs and the synergies by delving into the new range of services and use cases, various architectures, technological enablers, and higher layer aspects pertinent to NTNs integration. Moreover, we review the corresponding challenges arising from the technical peculiarities and the new approaches being adopted to develop efficient integrated ground-air-space (GAS) networks. Our survey further includes the major progress and outcomes from academic research as well as industrial efforts representing the main industrial trends, field trials, and prototyping towards the 6G networks

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA
    corecore