56,124 research outputs found

    Coherent optical binary polarisation shift keying heterodyne system in the free-space optical turbulence channel

    Get PDF
    In this paper, analytical and simulation results for the bit error rate (BER) performance and fading penalty of a coherent optical binary polarization shift keying (2PolSK) heterodyne system adopted for a free space optical (FSO) communication link modeled as the log-normal and the negative exponential atmospheric turbulence channels are presented. The conditional and unconditional BER expressions are derived, demonstrating the comprehensive similarity between the 2PolSK and the binary frequency shift keying (2FSK) schemes with regards to the system sensitivity. The power penalty due to the non-ideal polarization beam splitter (PBS) is also analyzed. The receiver sensitivity employing 2PolSK is compared with other modulation schemes in the presence of turbulence and the phase noise. The results show that 2PolSK offers improved signal-to-noise ratio (SNR) performance compared to the binary amplitude shift keying (2ASK)

    Elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms

    Get PDF
    The results of a joint experimental and theoretical study concerning elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms are described. These studies demonstrate several important aspects of elastic electron collisions with coherently excited atoms, and are the first such studies. From the measurements, collision and coherence parameters, as well as cross sections associated with an atomic ensemble prepared with an arbitrary in-plane laser geometry and linear polarization (with respect to the collision frame), or equivalently with any magnetic sublevel superposition, have been obtained at 20 eV impact energy and at 10°, 15° and 20° scattering angles. The convergent close-coupling (CCC) method was used within the non-relativistic LS-coupling framework to calculate the magnetic sublevel scattering amplitudes. From these amplitudes all the parameters and cross sections at 20 eV impact energy were extracted in the full angular range in 1° steps. The experimental and theoretical results were found to be in good agreement, indicating that the CCC method can be reliably applied to elastic scattering by 138Ba( ... 6s6p 1P1) atoms, and possibly to other heavy elements when spin-orbit coupling effects are negligible. Small but significant asymmetry was observed in the cross sections for scattering to the left and to the right. It was also found that elastic electron scattering by the initially isotropic atomic ensemble resulted in the creation of significant alignment. As a byproduct of the present studies, elastic scattering cross sections for metastable 138Ba atoms were also obtained

    On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets

    Full text link
    Millimeter wave (mmWave) vehicular communica tion systems have the potential to improve traffic efficiency and safety. Lack of secure communication links, however, may lead to a formidable set of abuses and attacks. To secure communication links, a physical layer precoding technique for mmWave vehicular communication systems is proposed in this paper. The proposed technique exploits the large dimensional antenna arrays available at mmWave systems to produce direction dependent transmission. This results in coherent transmission to the legitimate receiver and artificial noise that jams eavesdroppers with sensitive receivers. Theoretical and numerical results demonstrate the validity and effectiveness of the proposed technique and show that the proposed technique provides high secrecy throughput when compared to conventional array and switched array transmission techniques

    Simulation study of a highly efficient, high resolution X-ry sensor based on self-organizing aluminum oxide

    Full text link
    State of the art X-ray imaging sensors comprise a trade-off between the achievable efficiency and the spatial resolution. To overcome such limitations, the use of structured and scintillator filled aluminum oxide (AlOx) matrices has been investigated. We used Monte-Carlo (MC) X-ray simulations to determine the X-ray imaging quality of these AlOx matrices. Important factors which influence the behavior of the matrices are: filling factor (surface ratio between channels and 'closed' AlOx), channel diameter, aspect ratio, filling material etc. Therefore we modeled the porous AlOx matrix in several different ways with the MC X-ray simulation tool ROSI [1] and evaluated its properties to investigate the achievable performance at different X-ray spectra, with different filling materials (i.e. scintillators) and varying channel height and pixel readout. In this paper we focus on the quantum efficiency, the spatial resolution and image homogeneity
    • …
    corecore