1,015 research outputs found

    A Smartphone-Based System for Outdoor Data Gathering Using a Wireless Beacon Network and GPS Data: From Cyber Spaces to Senseable Spaces

    Get PDF
    Information and Communication Technologies (ICTs) and mobile devices are deeply influencing all facets of life, directly affecting the way people experience space and time. ICTs are also tools for supporting urban development, and they have also been adopted as equipment for furnishing public spaces. Hence, ICTs have created a new paradigm of hybrid space that can be defined as Senseable Spaces. Even if there are relevant cases where the adoption of ICT has made the use of public open spaces more “smart”, the interrelation and the recognition of added value need to be further developed. This is one of the motivations for the research presented in this paper. The main goal of the work reported here is the deployment of a system composed of three different connected elements (a real-world infrastructure, a data gathering system, and a data processing and analysis platform) for analysis of human behavior in the open space of Cardeto Park, in Ancona, Italy. For this purpose, and because of the complexity of this task, several actions have been carried out: the deployment of a complete real-world infrastructure in Cardeto Park, the implementation of an ad-hoc smartphone application for the gathering of participants’ data, and the development of a data pre-processing and analysis system for dealing with all the gathered data. A detailed description of these three aspects and the way in which they are connected to create a unique system is the main focus of this paper.This work has been supported by the Cost Action TU1306, called CYBERPARKS: Fostering knowledge about the relationship between Information and Communication Technologies and Public Spaces supported by strategies to improve their use and attractiveness, the Spanish Ministry of Economy and Competitiveness under the ESPHIA project (ref. TIN2014-56042-JIN) and the TARSIUS project (ref. TIN2015-71564-C4-4-R), and the Basque Country Department of Education under the BLUE project (ref. PI-2016-0010). The authors would also like to thank the staff of UbiSive s.r.l. for the support in developing the application

    Improving Omnidirectional Camera-Based Robot Localization Through Self-Supervised Learning

    Get PDF
    Autonomous agents in any environment require accurate and reliable position and motion estimation to complete their required tasks. Many different sensor modalities have been utilized for this task such as GPS, ultra-wide band, visual simultaneous localization and mapping (SLAM), and light detection and ranging (LiDAR) SLAM. Many of the traditional positioning systems do not take advantage of the recent advances in the machine learning field. In this work, an omnidirectional camera position estimation system relying primarily on a learned model is presented. The positioning system benefits from the wide field of view provided by an omnidirectional camera. Recent developments in the self-supervised learning field for generating useful features from unlabeled data are also assessed. A novel radial patch pretext task for omnidirectional images is presented in this work. The resulting implementation will be a robot localization and tracking algorithm that can be adapted to a variety of environments such as warehouses and college campuses. Further experiments with additional types of sensors including 3D LiDAR, 60 GHz wireless, and Ultra-Wideband localization systems utilizing machine learning are also explored. A fused learned localization model utilizing multiple sensor modalities is evaluated in comparison to individual sensor models

    Sports Spectator Beacon

    Get PDF
    The objective of this design project is to develop a system that can determine the location of an implemented beacon. The main operating technique used in determining the location is RSSI multilateration. The system consists of a beacon, network transmitters, mobile users, core processing and an interface with each software component for data transmission. The beacon is only an RF transmitter; therefore, receivers need to be able to interpret the signal of the beacon. In order to determine the location of the beacon from the receivers, the locations of the receivers must be known. The network transmitters’ act as a fixed grid to determine the location of the receivers and once that location is processed; multilateration is performed again to find the location of the beacon

    Omnichannel Value Chain: Mapping Digital Technologies for Channel Integration Activities

    Get PDF
    In order to provide a seamless customer experience, researchers and practitioners have proposed creation of an omnichannel retailing environment by integrating online and offline channels. Channel integration necessitates use of digital technologies and there are myriads of technological solutions available. However, retailers are struggling with selection and implementation of suitable technologies to add value through channel integration. Despite the strong practical need, this issue has not been effectively addressed in the academic literature. This paper presents an omnichannel value chain underpinned by Porter’s value chain model. We identify ten channel integration activities for value creation by carrying out a synthesis of current research on omnichannel retailing. Enabling digital technologies are then mapped to these activities using technology implementation examples and provide a guideline for retailers to select appropriate technologies for the identified value creation activities

    Wireless and Physical Security via Embedded Sensor Networks

    Full text link
    Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CIES/CNS 0520166, CNS/ITR 0205294, CISE/ERA RI 0202067

    Generic framework for the personal omni-remote controller using M2MI

    Get PDF
    A Generic Framework for the Personal Omni-Remote Controller Using M2MI is a master’s thesis outlining a generic framework for the wireless omni-remote controller that controls neighboring appliances by using Many-to-Many Invocation (M2MI). M2MI is an object-oriented abstraction of broadcast communication. First, this paper introduces the history of remote controllers and analyzes omni-remote controller projects made by other researchers in this area, such as the Pebbles PDA project at Carnegie Mellon University and HP’s COOLTOWN project. Second, this paper depicts a generic framework of the personal omni-remote controller system including architecture, type hierarchy, and service discovery. In this framework, a module approach and a decentralized dual-mode service discovery scheme are introduced. When users request a certain type of service, their omni-remote controller application will first discover the available appliances in the vicinity and then bring up the corresponding control module for the target appliance. Thus, users can control the appliance through the User Interface of the control module. To join the omni-remote controller system, servers and clients need to follow the type hierarchy convention of the system. Finally, several implementations are given to show the control of different appliances with different capabilities. These appliances include thermostats, TVs with parental control, and washing machines
    • 

    corecore