5 research outputs found

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Source Separation for Hearing Aid Applications

    Get PDF

    Unsupervised neural spike identification for large-scale, high-density micro-electrode arrays

    Get PDF
    This work deals with the development and evaluation of algorithms that extract sequences of single neuron action potentials from extracellular recordings of superimposed neural activity - a task commonly referred to as spike sorting. Large (>103>10^3 electrodes) and dense (subcellular spatial sampling) CMOS-based micro-electrode-arrays allow to record from hundreds of neurons simultaneously. State of the art algorithms for up to a few hundred sensors are not directly applicable to this type of data. Promising modern spike sorting algorithms that seek the statistically optimal solution or focus on real-time capabilities need to be initialized with a preceding sorting. Therefore, this work focused on unsupervised solutions, in order to learn the number of neurons and their spike trains with proper resolution of both temporally and spatiotemporally overlapping activity from the extracellular data alone. Chapter (1) informs about the nature of the data, a model based view and how this relates to spike sorting in order to understand the design decisions of this thesis. The main materials and methods chapter (2) bundles the infrastructural work that is independent of but mandatory for the development and evaluation of any spike sorting method. The main problem was split in two parts. Chapter (3) assesses the problem of analyzing data from thousands of densely integrated channels in a divide-and-conquer fashion. Making use of the spatial information of dense 2D arrays, regions of interest (ROIs) with boundaries adapted to the electrical image of single or multiple neurons were automatically constructed. All ROIs could then be processed in parallel. Within each region of interest the maximum number of neurons could be estimated from the local data matrix alone. An independent component analysis (ICA) based sorting was used to identify units within ROIs. This stage can be replaced by another suitable spike sorting algorithm to solve the local problem. Redundantly identified units across different ROIs were automatically fused into a global solution. The framework was evaluated on both real as well as simulated recordings with ground truth. For the latter it was shown that a major fraction of units could be extracted without any error. The high-dimensional data can be visualized after automatic sorting for convenient verification. Means of rapidly separating well from poorly isolated neurons were proposed and evaluated. Chapter (4) presents a more sophisticated algorithm that was developed to solve the local problem of densely arranged sensors. ICA assumes the data to be instantaneously mixed, thereby reducing spatial redundancy only and ignoring the temporal structure of extracellular data. The widely accepted generative model describes the intracellular spike trains to be convolved with their extracellular spatiotemporal kernels. To account for the latter it was assessed thoroughly whether convolutive ICA (cICA) could increase sorting performance over instantaneous ICA. The high computational complexity of cICA was dealt with by automatically identifying relevant subspaces that can be unmixed in parallel. Although convolutive ICA is suggested by the data model, the sorting results were dominated by the post-processing for realistic scenarios and did not outperform ICA based sorting. Potential alternatives are discussed thoroughly and bounded from above by a supervised sorting. This work provides a completely unsupervised spike sorting solution that enables the extraction of a major fraction of neurons with high accuracy and thereby helps to overcome current limitations of analyzing the high-dimensional datasets obtained from simultaneously imaging the extracellular activity from hundreds of neurons with thousands of electrodes

    Statistical single channel source separation

    Get PDF
    PhD ThesisSingle channel source separation (SCSS) principally is one of the challenging fields in signal processing and has various significant applications. Unlike conventional SCSS methods which were based on linear instantaneous model, this research sets out to investigate the separation of single channel in two types of mixture which is nonlinear instantaneous mixture and linear convolutive mixture. For the nonlinear SCSS in instantaneous mixture, this research proposes a novel solution based on a two-stage process that consists of a Gaussianization transform which efficiently compensates for the nonlinear distortion follow by a maximum likelihood estimator to perform source separation. For linear SCSS in convolutive mixture, this research proposes new methods based on nonnegative matrix factorization which decomposes a mixture into two-dimensional convolution factor matrices that represent the spectral basis and temporal code. The proposed factorization considers the convolutive mixing in the decomposition by introducing frequency constrained parameters in the model. The method aims to separate the mixture into its constituent spectral-temporal source components while alleviating the effect of convolutive mixing. In addition, family of Itakura-Saito divergence has been developed as a cost function which brings the beneficial property of scale-invariant. Two new statistical techniques are proposed, namely, Expectation-Maximisation (EM) based algorithm framework which maximizes the log-likelihood of a mixed signals, and the maximum a posteriori approach which maximises the joint probability of a mixed signal using multiplicative update rules. To further improve this research work, a novel method that incorporates adaptive sparseness into the solution has been proposed to resolve the ambiguity and hence, improve the algorithm performance. The theoretical foundation of the proposed solutions has been rigorously developed and discussed in details. Results have concretely shown the effectiveness of all the proposed algorithms presented in this thesis in separating the mixed signals in single channel and have outperformed others available methods.Universiti Teknikal Malaysia Melaka(UTeM), Ministry of Higher Education of Malaysi

    Bayesian separation and recovery of convolutively mixed autoregressive sources

    No full text
    In this paper we address the problem of the separation and recovery of convolutively mixed autoregressive processes in a Bayesian framework. Solving this problem requires the ability to solve integration and/or optimization problems of complicated posterior distributions. We thus propose efficient stochastic algorithms based on Markov chain Monte Carlo (MCMC) methods. We present three algorithms. The first one is a classical Gibbs sampler that generates samples from the posterior distribution. The two other algorithms are stochastic optimization algorithms that allow to optimize either the marginal distribution of the sources, or the marginal distribution of the parameters of the sources and mixing filters, conditional upon the observation. Simulations are presented
    corecore