6,881 research outputs found

    Computational Cognitive Neuroscience

    Get PDF
    This chapter provides an overview of the basic research strategies and analytic techniques deployed in computational cognitive neuroscience. On the one hand, “top-down” (or reverse-engineering) strategies are used to infer, from formal characterizations of behavior and cognition, the computational properties of underlying neural mechanisms. On the other hand, “bottom-up” research strategies are used to identify neural mechanisms and to reconstruct their computational capacities. Both of these strategies rely on experimental techniques familiar from other branches of neuroscience, including functional magnetic resonance imaging, single-cell recording, and electroencephalography. What sets computational cognitive neuroscience apart, however, is the explanatory role of analytic techniques from disciplines as varied as computer science, statistics, machine learning, and mathematical physics. These techniques serve to describe neural mechanisms computationally, but also to drive the process of scientific discovery by influencing which kinds of mechanisms are most likely to be identified. For this reason, understanding the nature and unique appeal of computational cognitive neuroscience requires not just an understanding of the basic research strategies that are involved, but also of the formal methods and tools that are being deployed, including those of probability theory, dynamical systems theory, and graph theory

    How could a rational analysis model explain?

    Get PDF
    Rational analysis is an influential but contested account of how probabilistic modeling can be used to construct non-mechanistic but self-standing explanatory models of the mind. In this paper, I disentangle and assess several possible explanatory contributions which could be attributed to rational analysis. Although existing models suffer from evidential problems that question their explanatory power, I argue that rational analysis modeling can complement mechanistic theorizing by providing models of environmental affordances

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)
    • …
    corecore