2,058 research outputs found

    Quickest Change-Point Detection with Sampling Right Constraints

    Get PDF
    The quickest change-point detection problems with sampling right constraints are considered. Specially, an observer sequentially takes observations from a random sequence, whose distribution will change at an unknown time. Based on the observation sequence, the observer wants to identify the change-point as quickly as possible. Unlike the classic quickest detection problem in which the observer can take an observation at each time slot, we impose a causal sampling right constraint to the observer. In particular, sampling rights are consumed when the observer takes an observation and are replenished randomly by a stochastic process. The observer cannot take observations if there is no sampling right left. The causal sampling right constraint is motivated by several practical applications. For example, in the application of sensor network for monitoring the abrupt change of its ambient environment, the sensor can only take observations if it has energy left in its battery. With this additional constraint, we design and analyze the optimal detection and sampling right allocation strategies to minimize the detection delay under various problem setups. As one of our main contributions, a greedy sampling right allocation strategy, by which the observer spends sampling rights in taking observations as long as there are sampling rights left, is proposed. This strategy possesses a low complexity structure, and leads to simple but (asymptotically) optimal detection algorithms for the problems under consideration. Specially, our main results include: 1) Non-Bayesian quickest change-point detection: we consider non-Bayesian quickest detection problem with stochastic sampling right constraint. Two criteria, namely the algorithm level average run length (ARL) and the system level ARL, are proposed to control the false alarm rate. We show that the greedy sampling right allocation strategy combined with the cumulative sum (CUSUM) algorithm is optimal for Lorden\u27s setup with the algorithm level ARL constraint and is asymptotically optimal for both Lorden\u27s and Pollak\u27s setups with the system level ARL constraint. 2) Bayesian quickest change-point detection: both limited sampling right constraint and stochastic sampling right constraint are considered in the Bayesian quickest detection problem. The limited sampling right constraint can be viewed as a special case of the stochastic sampling right constraint with a zero sampling right replenishing rate. The optimal solutions are derived for both sampling right constraints. However, the structure of the optimal solutions are rather complex. For the problem with the limited sampling right constraint, we provide asymptotic upper and lower bounds for the detection delay. For the problem with the stochastic sampling right constraint, we show that the greedy sampling right allocation strategy combined with Shiryaev\u27s detection rule is asymptotically optimal. 3) Quickest change-point detection with unknown post-change parameters: we extend previous results to the quickest detection problem with unknown post-change parameters. Both non-Bayesian and Bayesian setups with stochastic sampling right constraints are considered. For the non-Bayesian problem, we show that the greedy sampling right allocation strategy combined with the M-CUSUM algorithm is asymptotically optimal. For the Bayesian setups, we show that the greedy sampling right allocation strategy combined with the proposed M-Shiryaev algorithm is asymptotically optimal

    Optimal Bayesian Quickest Detection for Hidden Markov Models and Structured Generalisations

    Full text link
    In this paper we consider the problem of quickly detecting changes in hidden Markov models (HMMs) in a Bayesian setting, as well as several structured generalisations including changes in statistically periodic processes, quickest detection of a Markov process across a sensor array, quickest detection of a moving target in a sensor network and quickest change detection (QCD) in multistream data. Our main result establishes an optimal Bayesian HMM QCD rule with a threshold structure. This framework and proof techniques allow us to to elegantly establish optimal rules for several structured generalisations by showing that these problems are special cases of the Bayesian HMM QCD problem. We develop bounds to characterise the performance of our optimal rule and provide an efficient method for computing the test statistic. Finally, we examine the performance of our rule in several simulation examples and propose a technique for calculating the optimal threshold

    Non-Bayesian Quickest Detection with Stochastic Sample Right Constraints

    Full text link
    In this paper, we study the design and analysis of optimal detection scheme for sensors that are deployed to monitor the change in the environment and are powered by the energy harvested from the environment. In this type of applications, detection delay is of paramount importance. We model this problem as quickest change detection problem with a stochastic energy constraint. In particular, a wireless sensor powered by renewable energy takes observations from a random sequence, whose distribution will change at a certain unknown time. Such a change implies events of interest. The energy in the sensor is consumed by taking observations and is replenished randomly. The sensor cannot take observations if there is no energy left in the battery. Our goal is to design a power allocation scheme and a detection strategy to minimize the worst case detection delay, which is the difference between the time when an alarm is raised and the time when the change occurs. Two types of average run length (ARL) constraint, namely an algorithm level ARL constraint and an system level ARL constraint, are considered. We propose a low complexity scheme in which the energy allocation rule is to spend energy to take observations as long as the battery is not empty and the detection scheme is the Cumulative Sum test. We show that this scheme is optimal for the formulation with the algorithm level ARL constraint and is asymptotically optimal for the formulations with the system level ARL constraint.Comment: 30 pages, 5 figure
    • …
    corecore