24,825 research outputs found

    Harmonic Exponential Families on Manifolds

    Get PDF
    In a range of fields including the geosciences, molecular biology, robotics and computer vision, one encounters problems that involve random variables on manifolds. Currently, there is a lack of flexible probabilistic models on manifolds that are fast and easy to train. We define an extremely flexible class of exponential family distributions on manifolds such as the torus, sphere, and rotation groups, and show that for these distributions the gradient of the log-likelihood can be computed efficiently using a non-commutative generalization of the Fast Fourier Transform (FFT). We discuss applications to Bayesian camera motion estimation (where harmonic exponential families serve as conjugate priors), and modelling of the spatial distribution of earthquakes on the surface of the earth. Our experimental results show that harmonic densities yield a significantly higher likelihood than the best competing method, while being orders of magnitude faster to train.Comment: fixed typ

    Distributed Bayesian Filtering using Logarithmic Opinion Pool for Dynamic Sensor Networks

    Get PDF
    The discrete-time Distributed Bayesian Filtering (DBF) algorithm is presented for the problem of tracking a target dynamic model using a time-varying network of heterogeneous sensing agents. In the DBF algorithm, the sensing agents combine their normalized likelihood functions in a distributed manner using the logarithmic opinion pool and the dynamic average consensus algorithm. We show that each agent's estimated likelihood function globally exponentially converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. We rigorously characterize the convergence, stability, and robustness properties of the DBF algorithm. Moreover, we provide an explicit bound on the time step size of the DBF algorithm that depends on the time-scale of the target dynamics, the desired convergence error bound, and the modeling and communication error bounds. Furthermore, the DBF algorithm for linear-Gaussian models is cast into a modified form of the Kalman information filter. The performance and robust properties of the DBF algorithm are validated using numerical simulations

    Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    Get PDF
    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.Comment: 14 pages, 6 figures, submitted to IEEE JSTSP Special Issue on Machine Learning for Cognition in Radio Communications and Rada

    The Neural Particle Filter

    Get PDF
    The robust estimation of dynamically changing features, such as the position of prey, is one of the hallmarks of perception. On an abstract, algorithmic level, nonlinear Bayesian filtering, i.e. the estimation of temporally changing signals based on the history of observations, provides a mathematical framework for dynamic perception in real time. Since the general, nonlinear filtering problem is analytically intractable, particle filters are considered among the most powerful approaches to approximating the solution numerically. Yet, these algorithms prevalently rely on importance weights, and thus it remains an unresolved question how the brain could implement such an inference strategy with a neuronal population. Here, we propose the Neural Particle Filter (NPF), a weight-less particle filter that can be interpreted as the neuronal dynamics of a recurrently connected neural network that receives feed-forward input from sensory neurons and represents the posterior probability distribution in terms of samples. Specifically, this algorithm bridges the gap between the computational task of online state estimation and an implementation that allows networks of neurons in the brain to perform nonlinear Bayesian filtering. The model captures not only the properties of temporal and multisensory integration according to Bayesian statistics, but also allows online learning with a maximum likelihood approach. With an example from multisensory integration, we demonstrate that the numerical performance of the model is adequate to account for both filtering and identification problems. Due to the weightless approach, our algorithm alleviates the 'curse of dimensionality' and thus outperforms conventional, weighted particle filters in higher dimensions for a limited number of particles

    Network Plasticity as Bayesian Inference

    Full text link
    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling.Comment: 33 pages, 5 figures, the supplement is available on the author's web page http://www.igi.tugraz.at/kappe

    A novel estimator of the polarization amplitude from normally distributed Stokes parameters

    Full text link
    We propose a novel estimator of the polarization amplitude from a single measurement of its normally distributed (Q,U)(Q,U) Stokes components. Based on the properties of the Rice distribution and dubbed 'MAS' (Modified ASymptotic), it meets several desirable criteria:(i) its values lie in the whole positive region; (ii) its distribution is continuous; (iii) it transforms smoothly with the signal-to-noise ratio (SNR) from a Rayleigh-like shape to a Gaussian one; (iv) it is unbiased and reaches its components' variance as soon as the SNR exceeds 2; (v) it is analytic and can therefore be used on large data-sets. We also revisit the construction of its associated confidence intervals and show how the Feldman-Cousins prescription efficiently solves the issue of classical intervals lying entirely in the unphysical negative domain. Such intervals can be used to identify statistically significant polarized regions and conversely build masks for polarization data. We then consider the case of a general [Q,U][Q,U] covariance matrix and perform a generalization of the estimator that preserves its asymptotic properties. We show that its bias does not depend on the true polarization angle, and provide an analytic estimate of its variance. The estimator value, together with its variance, provide a powerful point-estimate of the true polarization amplitude that follows an unbiased Gaussian distribution for a SNR as low as 2. These results can be applied to the much more general case of transforming any normally distributed random variable from Cartesian to polar coordinates.Comment: Accepted by MNRA
    • …
    corecore