6,743 research outputs found

    Bayesian prediction of an epidemic curve

    Get PDF
    AbstractAn epidemic curve is a graph in which the number of new cases of an outbreak disease is plotted against time. Epidemic curves are ordinarily constructed after the disease outbreak is over. However, a good estimate of the epidemic curve early in an outbreak would be invaluable to health care officials. Currently, techniques for predicting the severity of an outbreak are very limited. As far as predicting the number of future cases, ordinarily epidemiologists simply make an educated guess as to how many people might become affected. We develop a model for estimating an epidemic curve early in an outbreak, and we show results of experiments testing its accuracy

    Estimation of COVID-19 spread curves integrating global data and borrowing information

    Full text link
    Currently, novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid spread of the virus has created pandemic, and countries all over the world are struggling with a surge in COVID-19 infected cases. There are no drugs or other therapeutics approved by the US Food and Drug Administration to prevent or treat COVID-19: information on the disease is very limited and scattered even if it exists. This motivates the use of data integration, combining data from diverse sources and eliciting useful information with a unified view of them. In this paper, we propose a Bayesian hierarchical model that integrates global data for real-time prediction of infection trajectory for multiple countries. Because the proposed model takes advantage of borrowing information across multiple countries, it outperforms an existing individual country-based model. As fully Bayesian way has been adopted, the model provides a powerful predictive tool endowed with uncertainty quantification. Additionally, a joint variable selection technique has been integrated into the proposed modeling scheme, which aimed to identify possible country-level risk factors for severe disease due to COVID-19

    Probabilistic projections of HIV prevalence using Bayesian melding

    Full text link
    The Joint United Nations Programme on HIV/AIDS (UNAIDS) has developed the Estimation and Projection Package (EPP) for making national estimates and short-term projections of HIV prevalence based on observed prevalence trends at antenatal clinics. Assessing the uncertainty about its estimates and projections is important for informed policy decision making, and we propose the use of Bayesian melding for this purpose. Prevalence data and other information about the EPP model's input parameters are used to derive a probabilistic HIV prevalence projection, namely a probability distribution over a set of future prevalence trajectories. We relate antenatal clinic prevalence to population prevalence and account for variability between clinics using a random effects model. Predictive intervals for clinic prevalence are derived for checking the model. We discuss predictions given by the EPP model and the results of the Bayesian melding procedure for Uganda, where prevalence peaked at around 28% in 1990; the 95% prediction interval for 2010 ranges from 2% to 7%.Comment: Published at http://dx.doi.org/10.1214/07-AOAS111 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Predicting epidemic evolution on contact networks from partial observations

    Full text link
    The massive employment of computational models in network epidemiology calls for the development of improved inference methods for epidemic forecast. For simple compartment models, such as the Susceptible-Infected-Recovered model, Belief Propagation was proved to be a reliable and efficient method to identify the origin of an observed epidemics. Here we show that the same method can be applied to predict the future evolution of an epidemic outbreak from partial observations at the early stage of the dynamics. The results obtained using Belief Propagation are compared with Monte Carlo direct sampling in the case of SIR model on random (regular and power-law) graphs for different observation methods and on an example of real-world contact network. Belief Propagation gives in general a better prediction that direct sampling, although the quality of the prediction depends on the quantity under study (e.g. marginals of individual states, epidemic size, extinction-time distribution) and on the actual number of observed nodes that are infected before the observation time

    Bayesian data assimilation provides rapid decision support for vector-borne diseases

    Get PDF
    Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Whereas host population data is typically available, for novel disease introductions there is a high chance of the pathogen utilising a vector for which data is unavailable. This presents a barrier to estimating the parameters of dynamical models representing host-vector-pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times, and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds, and provides evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks
    • …
    corecore