773 research outputs found

    Development and validation of enhanced fuzzy logic controller and boost converter topologies for a single phase grid system

    Get PDF
    Introduction. Solar photovoltaic system is one of the most essential and demanding renewable energy source in the current days, due to the benefits of high efficiency, reduced cost, no pollution, and environment friendly characteristics. Here, the maximum power point tracking controller has been implemented for obtaining an extreme power from the photovoltaic array. For this purpose, there are different controller and converter strategies have been deployed in the conventional works. It includes perturb and observation, incremental conductance, fuzzy logic systems, and hill climbing, and these techniques intend to extract the high amount of power from the solar systems under different climatic conditions. Still, it limits with the issues like increased design complexity, high cost consumption, high harmonics, and increased time consumption. The goal of this work is to deploy an improved controlling and converter topologies to regulate the output voltage and power fed to the single phase grid systems. The novelty of the work aims to develop an enhanced fuzzy logic controller based maximum power point tracking mechanism with the boost DC-DC converter topology for a single phase grid tied photovoltaic systems. Practical value. Also, the higher order harmonics suppression and unbalanced current elimination are handled by the use of LCL filtering technique, which efficiently reduces the harmonics in the output of inverter voltage and current. Moreover, it helps to obtain the reduced total harmonics distortion value with improved accuracy and efficiency. Results. There are different performance indicators have been evaluated for validating the proposed enhanced fuzzy logic controller–maximum power point tracking controlling technique. Moreover, the obtained results are compared with some of the conventional controlling algorithms for proving the betterment of the proposed work.Вступ. Сонячна фотоелектрична система є одним з найбільш важливих та затребуваних відновлюваних джерел енергії в наші дні завдяки перевагам високої ефективності, низької вартості, відсутності забруднення та екологічно безпечним характеристикам. При цьому було реалізовано контролер стеження за точкою максимальної потужності для отримання екстремальної потужності від фотогальванічної батареї. З цією метою у традиційних роботах використовуються різні стратегії контролерів та перетворювачів. Це включає збурення та спостереження, інкрементну провідність, системи нечіткої логіки та сходження на пагорб, і ці методи призначені для отримання великої кількості енергії із сонячних систем у різних кліматичних умовах. Тим не менш, це обмежується такими проблемами, як підвищена складність конструкції, високі витрати, високі гармоніки та збільшення витрат часу. Метою цієї роботи є розвиток вдосконаленого управління та топології перетворювача для регулювання вихідної напруги та потужності, що подається до однофазних мережевих систем. Новизна роботи спрямована на розробку вдосконаленого механізму відстеження точки максимальної потужності на основі контролера з нечіткою логікою з топологією перетворювача постійного струму, що підвищує, для однофазних фотоелектричних систем, прив'язаних до мережі. Практична цінність. Крім того, придушення гармонік вищих порядків та усунення незбалансованого струму здійснюється за допомогою методу LCL-фільтрації, який ефективно зменшує гармоніку на виході інвертора напруги та струму. Крім того, це допомагає отримати зменшене значення повного гармонійного спотворення з покращеною точністю та ефективністю. Результати. Існують різні показники ефективності, які були оцінені для перевірки запропонованого покращеного контролера нечіткої логіки – методу керування відстеженням точки максимальної потужності. Крім того, отримані результати порівнюються з деякими звичайними алгоритмами контролю для доведення кращості запропонованої роботи

    Assessing the geospatial nature of location-dependent costs in installation of solar photovoltaic plants

    Get PDF
    A major hurdle in increasing the economic feasibility of solar photovoltaic (SPV) plants is the ever-increasing share of location-dependent costs (land, transmission, labor, etc.) in total installation costs. Such costs are geospatial in nature, due to spatial socio-economics affecting them. Present geolocation methods, for locating SPV installation sites, do not consider the effect of location-dependent costs in installation. We use a spatial parameterization model for examining the factors causing spatial variation of the installation costs of land, labor, transmission and supply chains for suburban SPV plants, within a geographic boundary. The model is applied to Kolkata city, India, and the spatial variation of the costs are checked in a 2500 km²2 suburban boundary. The spatial variation of the location-dependent costs is mainly caused by the distance from an economic focal point of the city. The variations significantly optimize at minima points in the 2500 km² boundary, where the location-dependent costs increase by 10% with an average 2.6 km deviation and an average 6.7 km deviation from the global minima, for small and large plants, respectively. The spatial minima is mainly caused by variance of land and transmission costs. This minima location lies on the extrapolation of a line that connects the city focal point with the substation. The capacity of the SPV plants at the optima increases with increasing transmission voltage (11 kV to 66 kV), ranging from 4 MW to 257 MW in the case-study (small to large scale), while the minima shift away from the city focal point (ranging 29 km to 48 km) with increasing capacity. This study provides a perspective on how the spatial variation of installation costs can play a role in the geolocation of SPV plants. Furthermore, the empirical and spatial variation of location-dependent costs can enable energy planners to evaluate the economic feasibility of solar power and promote better land-use near cities

    A review of recent advances in metaheuristic maximum power point tracking algorithms for solar photovoltaic systems under the partial-shading conditions

    Get PDF
    Several maximum power point (MPP) tracking algorithms for solar power or photovoltaic (PV) systems concerning partial-shading conditions have been studied and reviewed using conventional or advanced methods. The standard MPPT algorithms for partial-shading conditions are: (i) conventional; (ii) mathematics-based; (iii) artificial intelligence; (iv) metaheuristic. The main problems of the conventional methods are poor power harvesting and low efficiency due to many local maximum appearances and difficulty in determining the global maximum tracking. This paper presents MPPT algorithms for partial-shading conditions, mainly metaheuristics algorithms. Firstly, the four classification algorithms will be reviewed. Secondly, an in-depth review of the metaheuristic algorithms is presented. Remarkably, 40 metaheuristic algorithms are classified into four classes for a more detailed discussion; physics-based, biology-based, sociology-based, and human behavior-based are presented and evaluated comprehensively. Furthermore, the performance comparison of the 40 metaheuristic algorithms in terms of complexity level, converter type, sensor requirement, steady-state oscillation, tracking capability, cost, and grid connection are synthesized. Generally, readers can choose the most appropriate algorithms according to application necessities and system conditions. This study can be considered a valuable reference for in-depth works on current related issues

    An overview of artificial intelligence applications for power electronics

    Get PDF
    corecore