10,015 research outputs found

    Bayesian Nonparametric Estimation and Consistency of Mixed Multinomial Logit Choice Models

    Get PDF
    This paper develops nonparametric estimation for discrete choice models based on the Mixed Multinomial Logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an unknown distribution G. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution G, to estimate the unknown choice probabilities. Theoretical support for the use of the proposed methodology is provided by establishing strong consistency of a general nonparametric prior on G under simple sufficient conditions. Consistency is defined according to a L1-type distance on the space of choice probabilities and is achieved by extending to a regression model framework a recent approach to strong consistency based on the summability of square roots of prior probabilities. Moving to estimation, slightly different techniques for non-panel and panel data models are discussed. For practical implementation, we describe efficient and relatively easy to use blocked Gibbs sampling procedures. A simulation study is also performed to illustrate the proposed methods and the exibility they achieve with respect to parametric Gaussian MMNL models.Bayesian consistency, Bayesian nonparametrics, Blocked Gibbs sampler, Discrete choice models, Mixed Multinomial Logit, Random probability measures, Stick-breaking priors

    Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models

    Get PDF
    This paper develops nonparametric estimation for discrete choice models based on the mixed multinomial logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an unknown distribution GG. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution GG, to estimate choice probabilities. We provide an important theoretical support for the use of the proposed methodology by investigating consistency of the posterior distribution for a general nonparametric prior on the mixing distribution. Consistency is defined according to an L1L_1-type distance on the space of choice probabilities and is achieved by extending to a regression model framework a recent approach to strong consistency based on the summability of square roots of prior probabilities. Moving to estimation, slightly different techniques for non-panel and panel data models are discussed. For practical implementation, we describe efficient and relatively easy-to-use blocked Gibbs sampling procedures. These procedures are based on approximations of the random probability measure by classes of finite stick-breaking processes. A simulation study is also performed to investigate the performance of the proposed methods.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ233 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Bayesian Approximate Kernel Regression with Variable Selection

    Full text link
    Nonlinear kernel regression models are often used in statistics and machine learning because they are more accurate than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this paper, we propose a novel framework that provides an effect size analog of each explanatory variable for Bayesian kernel regression models when the kernel is shift-invariant --- for example, the Gaussian kernel. We use function analytic properties of shift-invariant reproducing kernel Hilbert spaces (RKHS) to define a linear vector space that: (i) captures nonlinear structure, and (ii) can be projected onto the original explanatory variables. The projection onto the original explanatory variables serves as an analog of effect sizes. The specific function analytic property we use is that shift-invariant kernel functions can be approximated via random Fourier bases. Based on the random Fourier expansion we propose a computationally efficient class of Bayesian approximate kernel regression (BAKR) models for both nonlinear regression and binary classification for which one can compute an analog of effect sizes. We illustrate the utility of BAKR by examining two important problems in statistical genetics: genomic selection (i.e. phenotypic prediction) and association mapping (i.e. inference of significant variants or loci). State-of-the-art methods for genomic selection and association mapping are based on kernel regression and linear models, respectively. BAKR is the first method that is competitive in both settings.Comment: 22 pages, 3 figures, 3 tables; theory added; new simulations presented; references adde

    Generalized structured additive regression based on Bayesian P-splines

    Get PDF
    Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM's and extensions to generalized structured additive regression based on one or two dimensional P-splines as the main building block. The approach extends previous work by Lang und Brezger (2003) for Gaussian responses. Inference relies on Markov chain Monte Carlo (MCMC) simulation techniques, and is either based on iteratively weighted least squares (IWLS) proposals or on latent utility representations of (multi)categorical regression models. Our approach covers the most common univariate response distributions, e.g. the Binomial, Poisson or Gamma distribution, as well as multicategorical responses. For the first time, we present Bayesian semiparametric inference for the widely used multinomial logit models. As we will demonstrate through two applications on the forest health status of trees and a space-time analysis of health insurance data, the approach allows realistic modelling of complex problems. We consider the enormous flexibility and extendability of our approach as a main advantage of Bayesian inference based on MCMC techniques compared to more traditional approaches. Software for the methodology presented in the paper is provided within the public domain package BayesX

    Bayesian learning of joint distributions of objects

    Full text link
    There is increasing interest in broad application areas in defining flexible joint models for data having a variety of measurement scales, while also allowing data of complex types, such as functions, images and documents. We consider a general framework for nonparametric Bayes joint modeling through mixture models that incorporate dependence across data types through a joint mixing measure. The mixing measure is assigned a novel infinite tensor factorization (ITF) prior that allows flexible dependence in cluster allocation across data types. The ITF prior is formulated as a tensor product of stick-breaking processes. Focusing on a convenient special case corresponding to a Parafac factorization, we provide basic theory justifying the flexibility of the proposed prior and resulting asymptotic properties. Focusing on ITF mixtures of product kernels, we develop a new Gibbs sampling algorithm for routine implementation relying on slice sampling. The methods are compared with alternative joint mixture models based on Dirichlet processes and related approaches through simulations and real data applications.Comment: Appearing in Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale, AZ, US

    Locally Adaptive Function Estimation for Binary Regression Models

    Get PDF
    In this paper we present a nonparametric Bayesian approach for fitting unsmooth or highly oscillating functions in regression models with binary responses. The approach extends previous work by Lang et al. (2002) for Gaussian responses. Nonlinear functions are modelled by first or second order random walk priors with locally varying variances or smoothing parameters. Estimation is fully Bayesian and uses latent utility representations of binary regression models for efficient block sampling from the full conditionals of nonlinear functions
    • ā€¦
    corecore