14,224 research outputs found

    Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

    Full text link
    Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. More recently, as deep learning models have become more common, RNNs have been used to forecast increasingly complicated systems. Dynamical spatio-temporal processes represent a class of complex systems that can potentially benefit from these types of models. Although the RNN literature is expansive and highly developed, uncertainty quantification is often ignored. Even when considered, the uncertainty is generally quantified without the use of a rigorous framework, such as a fully Bayesian setting. Here we attempt to quantify uncertainty in a more formal framework while maintaining the forecast accuracy that makes these models appealing, by presenting a Bayesian RNN model for nonlinear spatio-temporal forecasting. Additionally, we make simple modifications to the basic RNN to help accommodate the unique nature of nonlinear spatio-temporal data. The proposed model is applied to a Lorenz simulation and two real-world nonlinear spatio-temporal forecasting applications

    Forecasting and Forecast Combination in Airline Revenue Management Applications

    Get PDF
    Predicting a variable for a future point in time helps planning for unknown future situations and is common practice in many areas such as economics, finance, manufacturing, weather and natural sciences. This paper investigates and compares approaches to forecasting and forecast combination that can be applied to service industry in general and to airline industry in particular. Furthermore, possibilities to include additionally available data like passenger-based information are discussed

    Forecasting Realized Volatility with Linear and Nonlinear Univariate Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 futures. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed.Financial econometrics; volatility forecasting; neural networks; nonlinear models; realized volatility; bagging

    Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination

    Get PDF
    In this paper we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies that typically consider multiple but fixed model specifications, we use a single but dynamic specification for each model class. The point forecast results indicate that the STAR model generally outperforms linear autoregressive models. It also improves upon several fixed STAR models, demonstrating that careful specification of nonlinear time series models is of crucial importance. The results for neural network models are mixed in the sense that at long forecast horizons, an NN model obtained using Bayesian regularization produces more accurate forecasts than a corresponding model specified using the specific-to-general approach. Reasons for this outcome are discussed.forecast combination; forecast evaluation; neural network model; nonlinear modelling; nonlinear forecasting JEL Codes: C22; C53

    Modelling exchange rates: smooth transitions, neural networks, and linear models

    Get PDF
    The goal of this paper is to test for and model nonlinearities in several monthly exchange rates time series. We apply two different nonlinear alternatives, namely: the artificial neural network time series model estimated with Bayesian regularization and a flexible smooth transition specifica-tion, called the neuro-coefficient smooth transition autoregression. The linearity test rejects the null hypothesis of linearity in ten out of fourteen series. We compare, using different measures, the fore-casting performance of the nonlinear specifications with the linear autoregression and the random walk models.

    Forecasting Realized Volatility with Linear and Nonlinear Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in this paper.Financial econometrics, volatility forecasting, neural networks, nonlinear models, realized volatility, bagging.

    Forecasting Realized Volatility with Linear and Nonlinear Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in the paper.neural networks;nonlinear models;financial econometrics;realized volatility;bagging;volatility forecasting

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie
    corecore