776 research outputs found

    R2U2: Tool Overview

    Get PDF
    R2U2 (Realizable, Responsive, Unobtrusive Unit) is an extensible framework for runtime System HealthManagement (SHM) of cyber-physical systems. R2U2 can be run in hardware (e.g., FPGAs), or software; can monitorhardware, software, or a combination of the two; and can analyze a range of different types of system requirementsduring runtime. An R2U2 requirement is specified utilizing a hierarchical combination of building blocks: temporal formula runtime observers (in LTL or MTL), Bayesian networks, sensor filters, and Boolean testers. Importantly, the framework is extensible; it is designed to enable definitions of new building blocks in combination with the core structure. Originally deployed on Unmanned Aerial Systems (UAS), R2U2 is designed to run on a wide range of embedded platforms, from autonomous systems like rovers, satellites, and robots, to human-assistive ground systems and cockpits. R2U2 is named after the requirements it satisfies; while the exact requirements vary by platform and mission, the ability to formally reason about realizability, responsiveness, and unobtrusiveness is necessary for flight certifiability, safety-critical system assurance, and achievement of technology readiness levels for target systems. Realizability ensures that R2U2 is suficiently expressive to encapsulate meaningful runtime requirements while maintaining adaptability to run on different platforms, transition between different mission stages, and update quickly between missions. Responsiveness entails continuously monitoring the system under test, real-time reasoning, reporting intermediate status, and as-early-as-possible requirements evaluations. Unobtrusiveness ensures compliance with the crucial properties of the target architecture: functionality, certifiability, timing, tolerances, cost, or other constraints

    A Wireless Sensor Data Fusion Framework for Contaminant Detection

    Get PDF
    In recent years, much research has been done on wireless sensor networks and sensor data fusion, however there has been limited work regarding implementation of real systems that are capable of providing a highly connected sensor network for data logging and data fusion applications. This paper describes the design and implementation of a wireless, portable, and reconfigurable sensor network framework. This sensor node design has proven to be effective for monitoring environmental conditions of aircraft cabins and is well suited to environmental monitoring and detection of contaminants in large areas when utilizing sensor data fusion features

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Dynamic Safety Cases for Through-Life Safety Assurance

    Get PDF
    We describe dynamic safety cases, a novel operationalization of the concept of through-life safety assurance, whose goal is to enable proactive safety management. Using an example from the aviation systems domain, we motivate our approach, its underlying principles, and a lifecycle. We then identify the key elements required to move towards a formalization of the associated framework

    Enabling Technologies for Cognitive Optical Networks

    Get PDF

    Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    Get PDF
    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform

    R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems

    Get PDF
    We present R2U2, a novel framework for runtime monitoring of security properties and diagnosing of security threats on-board Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hardware, is a real-time, REALIZABLE, RESPONSIVE, UNOBTRUSIVE Unit for security threat detection. R2U2 is designed to continuously monitor inputs from the GPS and the ground control station, sensor readings, actuator outputs, and flight software status. By simultaneously monitoring and performing statistical reasoning, attack patterns and post-attack discrepancies in the UAS behavior can be detected. R2U2 uses runtime observer pairs for linear and metric temporal logics for property monitoring and Bayesian networks for diagnosis of security threats. We discuss the design and implementation that now enables R2U2 to handle security threats and present simulation results of several attack scenarios on the NASA DragonEye UAS
    • …
    corecore