20,667 research outputs found

    Bayesian network modeling for evolutionary genetic structures

    Get PDF
    AbstractEvolutionary theory states that stronger genetic characteristics reflect the organism’s ability to adapt to its environment and to survive the harsh competition faced by every species. Evolution normally takes millions of generations to assess and measure changes in heredity. Determining the connections, which constrain genotypes and lead superior ones to survive is an interesting problem. In order to accelerate this process,we develop an artificial genetic dataset, based on an artificial life (AL) environment genetic expression (ALGAE). ALGAE can provide a useful and unique set of meaningful data, which can not only describe the characteristics of genetic data, but also simplify its complexity for later analysis.To explore the hidden dependencies among the variables, Bayesian Networks (BNs) are used to analyze genotype data derived from simulated evolutionary processes and provide a graphical model to describe various connections among genes. There are a number of models available for data analysis such as artificial neural networks, decision trees, factor analysis, BNs, and so on. Yet BNs have distinct advantages as analytical methods which can discern hidden relationships among variables. Two main approaches, constraint based and score based, have been used to learn the BN structure. However, both suit either sparse structures or dense structures. Firstly, we introduce a hybrid algorithm, called “the E-algorithm”, to complement the benefits and limitations in both approaches for BN structure learning. Testing E-algorithm against a standardized benchmark dataset ALARM, suggests valid and accurate results. BAyesian Network ANAlysis (BANANA) is then developed which incorporates the E-algorithm to analyze the genetic data from ALGAE. The resulting BN topological structure with conditional probabilistic distributions reveals the principles of how survivors adapt during evolution producing an optimal genetic profile for evolutionary fitness

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science

    Self-adaptive exploration in evolutionary search

    Full text link
    We address a primary question of computational as well as biological research on evolution: How can an exploration strategy adapt in such a way as to exploit the information gained about the problem at hand? We first introduce an integrated formalism of evolutionary search which provides a unified view on different specific approaches. On this basis we discuss the implications of indirect modeling (via a ``genotype-phenotype mapping'') on the exploration strategy. Notions such as modularity, pleiotropy and functional phenotypic complex are discussed as implications. Then, rigorously reflecting the notion of self-adaptability, we introduce a new definition that captures self-adaptability of exploration: different genotypes that map to the same phenotype may represent (also topologically) different exploration strategies; self-adaptability requires a variation of exploration strategies along such a ``neutral space''. By this definition, the concept of neutrality becomes a central concern of this paper. Finally, we present examples of these concepts: For a specific grammar-type encoding, we observe a large variability of exploration strategies for a fixed phenotype, and a self-adaptive drift towards short representations with highly structured exploration strategy that matches the ``problem's structure''.Comment: 24 pages, 5 figure

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore