1,054 research outputs found

    Inference in Probabilistic Logic Programs using Weighted CNF's

    Get PDF
    Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. Several classical probabilistic inference tasks (such as MAP and computing marginals) have not yet received a lot of attention for this formalism. The contribution of this paper is that we develop efficient inference algorithms for these tasks. This is based on a conversion of the probabilistic logic program and the query and evidence to a weighted CNF formula. This allows us to reduce the inference tasks to well-studied tasks such as weighted model counting. To solve such tasks, we employ state-of-the-art methods. We consider multiple methods for the conversion of the programs as well as for inference on the weighted CNF. The resulting approach is evaluated experimentally and shown to improve upon the state-of-the-art in probabilistic logic programming

    Symbolic Exact Inference for Discrete Probabilistic Programs

    Full text link
    The computational burden of probabilistic inference remains a hurdle for applying probabilistic programming languages to practical problems of interest. In this work, we provide a semantic and algorithmic foundation for efficient exact inference on discrete-valued finite-domain imperative probabilistic programs. We leverage and generalize efficient inference procedures for Bayesian networks, which exploit the structure of the network to decompose the inference task, thereby avoiding full path enumeration. To do this, we first compile probabilistic programs to a symbolic representation. Then we adapt techniques from the probabilistic logic programming and artificial intelligence communities in order to perform inference on the symbolic representation. We formalize our approach, prove it sound, and experimentally validate it against existing exact and approximate inference techniques. We show that our inference approach is competitive with inference procedures specialized for Bayesian networks, thereby expanding the class of probabilistic programs that can be practically analyzed

    On the Relationship between Sum-Product Networks and Bayesian Networks

    Full text link
    In this paper, we establish some theoretical connections between Sum-Product Networks (SPNs) and Bayesian Networks (BNs). We prove that every SPN can be converted into a BN in linear time and space in terms of the network size. The key insight is to use Algebraic Decision Diagrams (ADDs) to compactly represent the local conditional probability distributions at each node in the resulting BN by exploiting context-specific independence (CSI). The generated BN has a simple directed bipartite graphical structure. We show that by applying the Variable Elimination algorithm (VE) to the generated BN with ADD representations, we can recover the original SPN where the SPN can be viewed as a history record or caching of the VE inference process. To help state the proof clearly, we introduce the notion of {\em normal} SPN and present a theoretical analysis of the consistency and decomposability properties. We conclude the paper with some discussion of the implications of the proof and establish a connection between the depth of an SPN and a lower bound of the tree-width of its corresponding BN.Comment: Full version of the same paper to appear at ICML-201

    Algebraic model counting

    Get PDF
    Weighted model counting (WMC) is a well-known inference task on knowledge bases, and the basis for some of the most efficient techniques for probabilistic inference in graphical models. We introduce algebraic model counting (AMC), a generalization of WMC to a semiring structure that provides a unified view on a range of tasks and existing results. We show that AMC generalizes many well-known tasks in a variety of domains such as probabilistic inference, soft constraints and network and database analysis. Furthermore, we investigate AMC from a knowledge compilation perspective and show that all AMC tasks can be evaluated using sd-DNNF circuits, which are strictly more succinct, and thus more efficient to evaluate, than direct representations of sets of models. We identify further characteristics of AMC instances that allow for evaluation on even more succinct circuits
    • …
    corecore