112 research outputs found

    Computational optimization methods for large-scale inverse problems

    Get PDF

    Neural Deformable Cone Beam CT

    Get PDF
    In oral and maxillofacial cone beam computed tomography (CBCT), patient motion is frequently observed and, if not accounted for, can severely affect the usability of the acquired images. We propose a highly flexible, data driven motion correction and reconstruction method which combines neural inverse rendering in a CBCT setting with a neural deformation field. We jointly optimize a lightweight coordinate based representation of the 3D volume together with a deformation network. This allows our method to generate high quality results while accurately representing occurring patient movements, such as head movements, separate jaw movements or swallowing. We evaluate our method in synthetic and clinical scenarios and are able to produce artefact-free reconstructions even in the presence of severe motion. While our approach is primarily developed for maxillofacial applications, we do not restrict the deformation field to certain kinds of motion. We demonstrate its flexibility by applying it to other scenarios, such as 4D lung scans or industrial tomography settings, achieving state-of-the art results within minutes with only minimal adjustments

    Reduction of Limited Angle Artifacts in Medical Tomography via Image Reconstruction

    Get PDF
    Artifacts are unwanted effects in tomographic images that do not reflect the nature of the object. Their widespread occurrence makes their reduction and if possible removal an important subject in the development of tomographic image reconstruction algorithms. Limited angle artifacts are caused by the limited angular measurements, constraining the available tomographic information. This thesis focuses on reducing these artifacts via image reconstruction in two cases of incomplete measurements from: (1) the gaps left after the removal of high density objects such as dental fillings, screws and implants in computed tomography (CT) and (2) partial ring scanner configurations in positron emission tomography (PET). In order to include knowledge about the measurement and noise, prior terms were used within the reconstruction methods. Careful consideration was given to the trade-off between image blurring and noise reduction upon reconstruction of low-dose measurements.Development of reconstruction methods is an incremental process starting with testing on simple phantoms towards more clinically relevant ones by modeling the respective physical processes involved. In this work, phantoms were constructed to ensure that the proposed reconstruction methods addressed to the limited angle problem. The reconstructed images were assessed qualitatively and quantitatively in terms of noise reduction, edge sharpness and contrast recovery.Maximum a posteriori (MAP) estimation with median root prior (MRP) was selected for the reconstruction of limited angle measurements. MAP with MRP successfully reduced the artifacts caused by limited angle data in various datasets, tested with the reconstruction of both list-mode and projection data. In all cases, its performance was found to be superior to conventional reconstruction methods such as total-variation (TV) prior, maximum likelihood expectation maximization (MLEM) and filtered backprojection (FBP). MAP with MRP was also more robust with respect to parameter selection than MAP with TV prior.This thesis demonstrates the wide-range applicability of MAP with MRP in medical tomography, especially in low-dose imaging. Furthermore, we emphasize the importance of developing and testing reconstruction methods with application-specific phantoms, together with the properties and limitations of the measurements in mind

    The reliability of cephalometric tracing using AI

    Full text link
    Introduction : L'objectif de cette étude est de comparer la différence entre l'analyse céphalométrique manuelle et l'analyse automatisée par l’intelligence artificielle afin de confirmer la fiabilité de cette dernière. Notre hypothèse de recherche est que la technique manuelle est la plus fiable des deux méthodes. Méthode : Un total de 99 radiographies céphalométriques latérales sont recueillies. Des tracés par technique manuelle (MT) et par localisation automatisée par intelligence artificielle (AI) sont réalisés pour toutes les radiographies. La localisation de 29 points céphalométriques couramment utilisés est comparée entre les deux groupes. L'erreur radiale moyenne (MRE) et un taux de détection réussie (SDR) de 2 mm sont utilisés pour comparer les deux groupes. Le logiciel AudaxCeph version 6.2.57.4225 est utilisé pour l'analyse manuelle et l'analyse AI. Résultats : Le MRE et SDR pour le test de fiabilité inter-examinateur sont respectivement de 0,87 ± 0,61mm et 95%. Pour la comparaison entre la technique manuelle MT et le repérage par intelligence artificielle AI, le MRE et SDR pour tous les repères sont respectivement de 1,48 ± 1,42 mm et 78 %. Lorsque les repères dentaires sont exclus, le MRE diminue à 1,33 ± 1,39 mm et le SDR augmente à 84 %. Lorsque seuls les repères des tissus durs sont inclus (excluant les points des tissus mous et dentaires), le MRE diminue encore à 1,25 ± 1,09 mm et le SDR augmente à 85 %. Lorsque seuls les points de repère des tissus mous sont inclus, le MRE augmente à 1,68 ± 1,89 mm et le SDR diminue à 78 %. Conclusion: La performance du logiciel est similaire à celles précédemment rapportée dans la littérature pour des logiciels utilisant un cadre de modélisation similaire. Nos résultats révèlent que le repérage manuel a donné lieu à une plus grande précision. Le logiciel a obtenu de très bons résultats pour les points de tissus durs, mais sa précision a diminué pour les tissus mous et dentaires. Nous concluons que cette technologie est très prometteuse pour une application en milieu clinique sous la supervision du docteur.Introduction: The objective of this study is to compare the difference between manual cephalometric analysis and automatic analysis by artificial intelligence to confirm the reliability of the latter. Our research hypothesis is that the manual technique is the most reliable of the methods and is still considered the gold standard. Method: A total of 99 lateral cephalometric radiographs were collected in this study. Manual technique (MT) and automatic localization by artificial intelligence (AI) tracings were performed for all radiographs. The localization of 29 commonly used landmarks were compared between both groups. Mean radial error (MRE) and a successful detection rate (SDR) of 2mm were used to compare both groups. AudaxCeph software version 6.2.57.4225 (Audax d.o.o., Ljubljana, Slovenia) was used for both manual and AI analysis. Results: The MRE and SDR for the inter-examinator reliability test were 0.87 ± 0.61mm and 95% respectively. For the comparison between the manual technique MT and landmarking with artificial intelligence AI, the MRE and SDR for all landmarks were 1.48 ± 1.42mm and 78% respectively. When dental landmarks are excluded, the MRE decreases to 1.33 ± 1.39mm and the SDR increases to 84%. When only hard tissue landmarks are included (excluding soft tissue and dental points) the MRE decreases further to 1.25 ± 1.09mm and the SDR increases to 85%. When only soft tissue landmarks are included the MRE increases to 1.68 ± 1.89mm and the SDR decreases to 78%. Conclusion: The software performed similarly to what was previously reported in literature for software that use analogous modeling framework. Comparing the software’s landmarking to manual landmarking our results reveal that the manual landmarking resulted in higher accuracy. The software operated very well for hard tissue points, but its accuracy went down for soft and dental tissue. Our conclusion is this technology shows great promise for application in clinical settings under the doctor’s supervision

    Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features

    Get PDF
    The goal of this paper is to automatically digitize craniomaxillofacial (CMF) landmarks efficiently and accurately from cone-beam computed tomography (CBCT) images, by addressing the challenge caused by large morphological variations across patients and image artifacts of CBCT images

    Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection

    Full text link
    corecore