7,278 research outputs found

    Spatio-temporal malaria transmission patterns in Navrongo demographic surveillance site, northern Ghana

    Get PDF
    The relationship between entomological measures of malaria transmission intensity and mortality remains uncertain. This is partly because transmission is heterogeneous even within small geographical areas. Studying this relationship requires high resolution, spatially structured, longitudinal entomological data. Geostatistical models that have been used to analyse the spatio-temporal heterogeneity have not considered the uncertainty in both sporozoite rate (SR) and mosquito density data. This study analysed data from Kassena-Nankana districts in northern Ghana to obtain small area estimates of malaria transmission rates allowing for this uncertainty.; Independent Bayesian geostatistical models for sporozoite rate and mosquito density were fitted to produce explicit entomological inoculation rate (EIR) estimates for small areas and short time periods, controlling for environmental factors.; Mosquitoes were trapped from 2,803 unique locations for three years using mainly CDC light traps. Anopheles gambiae constituted 52%, the rest were Anopheles funestus. Mean biting rates for An. funestus and An. gambiae were 32 and 33 respectively. Most bites occurred in September, the wettest month. The sporozoite rates were higher in the dry periods of the last two years compared with the wet period. The annual EIR varied from 1,132 to 157 infective bites. Monthly EIR varied between zero and 388 infective bites. Spatial correlation for SR was lower than that of mosquito densities.; This study confirms the presence of spatio-temporal heterogeneity in malaria transmission within a small geographical area. Spatial variance was stronger than temporal especially in the SR. The estimated EIR will be used in mortality analysis for the area

    Enhancing Bayesian risk prediction for epidemics using contact tracing

    Full text link
    Contact tracing data collected from disease outbreaks has received relatively little attention in the epidemic modelling literature because it is thought to be unreliable: infection sources might be wrongly attributed, or data might be missing due to resource contraints in the questionnaire exercise. Nevertheless, these data might provide a rich source of information on disease transmission rate. This paper presents novel methodology for combining contact tracing data with rate-based contact network data to improve posterior precision, and therefore predictive accuracy. We present an advancement in Bayesian inference for epidemics that assimilates these data, and is robust to partial contact tracing. Using a simulation study based on the British poultry industry, we show how the presence of contact tracing data improves posterior predictive accuracy, and can directly inform a more effective control strategy.Comment: 40 pages, 9 figures. Submitted to Biostatistic

    A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data

    Get PDF
    We describe a statistical framework for reconstructing the sequence of transmission events between observed cases of an endemic infectious disease using genetic, temporal and spatial information. Previous approaches to reconstructing transmission trees have assumed all infections in the study area originated from a single introduction and that a large fraction of cases were observed. There are as yet no approaches appropriate for endemic situations in which a disease is already well established in a host population and in which there may be multiple origins of infection, or that can enumerate unobserved infections missing from the sample. Our proposed framework addresses these shortcomings, enabling reconstruction of partially observed transmission trees and estimating the number of cases missing from the sample. Analyses of simulated datasets show the method to be accurate in identifying direct transmissions, while introductions and transmissions via one or more unsampled intermediate cases could be identified at high to moderate levels of case detection. When applied to partial genome sequences of rabies virus sampled from an endemic region of South Africa, our method reveals several distinct transmission cycles with little contact between them, and direct transmission over long distances suggesting significant anthropogenic influence in the movement of infected dogs
    • …
    corecore