9,918 research outputs found

    Inflation Persistance and Credibility in Turkey During the Nineties

    Get PDF
    This study assesses the credibility of disinflation programs in Turkey during the nineties, where several programs of reform took place. We investigate the credibility of these policies building on a previous research made by Agenor and Taylor (1993). The model is based on two assumptions: (i) inflation is a serially correlated process; (ii) the definition of a proxy that is able to measure the degree of credibility of a programme. The empirical results show that there was a sharp loss of credibility at the end of the 1991 and at the beginning of the 1994 and during the Asian crisis. The Program that the Central Bank implemented after the crisis was able to increase the level of credibility of the CBRT policies. Loss of credibility is registered during the end of the 1995, while various political events took place and during the 1997 following the world economic conditions and the outflow of capitals

    Let Your CyberAlter Ego Share Information and Manage Spam

    Full text link
    Almost all of us have multiple cyberspace identities, and these {\em cyber}alter egos are networked together to form a vast cyberspace social network. This network is distinct from the world-wide-web (WWW), which is being queried and mined to the tune of billions of dollars everyday, and until recently, has gone largely unexplored. Empirically, the cyberspace social networks have been found to possess many of the same complex features that characterize its real counterparts, including scale-free degree distributions, low diameter, and extensive connectivity. We show that these topological features make the latent networks particularly suitable for explorations and management via local-only messaging protocols. {\em Cyber}alter egos can communicate via their direct links (i.e., using only their own address books) and set up a highly decentralized and scalable message passing network that can allow large-scale sharing of information and data. As one particular example of such collaborative systems, we provide a design of a spam filtering system, and our large-scale simulations show that the system achieves a spam detection rate close to 100%, while the false positive rate is kept around zero. This system has several advantages over other recent proposals (i) It uses an already existing network, created by the same social dynamics that govern our daily lives, and no dedicated peer-to-peer (P2P) systems or centralized server-based systems need be constructed; (ii) It utilizes a percolation search algorithm that makes the query-generated traffic scalable; (iii) The network has a built in trust system (just as in social networks) that can be used to thwart malicious attacks; iv) It can be implemented right now as a plugin to popular email programs, such as MS Outlook, Eudora, and Sendmail.Comment: 13 pages, 10 figure

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    BPRS: Belief Propagation Based Iterative Recommender System

    Full text link
    In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems
    corecore