1,005 research outputs found

    Crowd Counting with Decomposed Uncertainty

    Full text link
    Research in neural networks in the field of computer vision has achieved remarkable accuracy for point estimation. However, the uncertainty in the estimation is rarely addressed. Uncertainty quantification accompanied by point estimation can lead to a more informed decision, and even improve the prediction quality. In this work, we focus on uncertainty estimation in the domain of crowd counting. With increasing occurrences of heavily crowded events such as political rallies, protests, concerts, etc., automated crowd analysis is becoming an increasingly crucial task. The stakes can be very high in many of these real-world applications. We propose a scalable neural network framework with quantification of decomposed uncertainty using a bootstrap ensemble. We demonstrate that the proposed uncertainty quantification method provides additional insight to the crowd counting problem and is simple to implement. We also show that our proposed method exhibits the state of the art performances in many benchmark crowd counting datasets.Comment: Accepted in AAAI 2020 (Main Technical Track

    An AI-Horticulture Monitoring and Prediction System with Automatic Object Counting

    Get PDF
    Estimating density maps and counting the number of objects of interest from images has a wide range of applications, such as crowd counting, traffic monitoring, cell microscopy in biomedical imaging, plant counting in agronomy, as well as environmental survey. Manual counting is a labor-intensive and time-consuming process. Over the past few years, the topic of automatic object counting by computers has been actively evolving from the classic machine learning methods based on handcrafted image features to end-to-end deep learning methods using data-driven feature engineering, for example by Convolutional Neural Networks (CNNs). In our research, we focus on the task of counting plants for large-scale nursery farms to build an AI-horticulture monitoring and prediction system using unmanned aerial vehicle (UAV) images. The common challenges of automatic object counting as other computer vision tasks are scenario difference, object occlusion, scale variation of views, non-uniform distribution, and perspective difference. For an AI-horticulture monitoring and prediction system for large-scale analysis, the plant species various a lot, so that the image features are different based on different appearance of species. In order to solve these complex problems, the deep convolutional neural network-based approaches are proposed. Our method uses the density map as the ground truth to train the modified classic deep neural networks for object counting regression. Experiments are conducted comparing our proposed models with the state-of-the-art object counting and density estimation approaches. The results demonstrate that our proposed counting model outperforms state-of-the-art approaches by achieving the best counting performance with a mean absolute error of 1.93 and a mean square error of 2.68 on our horticulture nursery plant dataset

    Crowd detection and counting using a static and dynamic platform: state of the art

    Get PDF
    Automated object detection and crowd density estimation are popular and important area in visual surveillance research. The last decades witnessed many significant research in this field however, it is still a challenging problem for automatic visual surveillance. The ever increase in research of the field of crowd dynamics and crowd motion necessitates a detailed and updated survey of different techniques and trends in this field. This paper presents a survey on crowd detection and crowd density estimation from moving platform and surveys the different methods employed for this purpose. This review category and delineates several detections and counting estimation methods that have been applied for the examination of scenes from static and moving platforms

    Taming Crowded Visual Scenes

    Get PDF
    Computer vision algorithms have played a pivotal role in commercial video surveillance systems for a number of years. However, a common weakness among these systems is their inability to handle crowded scenes. In this thesis, we have developed algorithms that overcome some of the challenges encountered in videos of crowded environments such as sporting events, religious festivals, parades, concerts, train stations, airports, and malls. We adopt a top-down approach by first performing a global-level analysis that locates dynamically distinct crowd regions within the video. This knowledge is then employed in the detection of abnormal behaviors and tracking of individual targets within crowds. In addition, the thesis explores the utility of contextual information necessary for persistent tracking and re-acquisition of objects in crowded scenes. For the global-level analysis, a framework based on Lagrangian Particle Dynamics is proposed to segment the scene into dynamically distinct crowd regions or groupings. For this purpose, the spatial extent of the video is treated as a phase space of a time-dependent dynamical system in which transport from one region of the phase space to another is controlled by the optical flow. Next, a grid of particles is advected forward in time through the phase space using a numerical integration to generate a flow map . The flow map relates the initial positions of particles to their final positions. The spatial gradients of the flow map are used to compute a Cauchy Green Deformation tensor that quantifies the amount by which the neighboring particles diverge over the length of the integration. The maximum eigenvalue of the tensor is used to construct a forward Finite Time Lyapunov Exponent (FTLE) field that reveals the Attracting Lagrangian Coherent Structures (LCS). The same process is repeated by advecting the particles backward in time to obtain a backward FTLE field that reveals the repelling LCS. The attracting and repelling LCS are the time dependent invariant manifolds of the phase space and correspond to the boundaries between dynamically distinct crowd flows. The forward and backward FTLE fields are combined to obtain one scalar field that is segmented using a watershed segmentation algorithm to obtain the labeling of distinct crowd-flow segments. Next, abnormal behaviors within the crowd are localized by detecting changes in the number of crowd-flow segments over time. Next, the global-level knowledge of the scene generated by the crowd-flow segmentation is used as an auxiliary source of information for tracking an individual target within a crowd. This is achieved by developing a scene structure-based force model. This force model captures the notion that an individual, when moving in a particular scene, is subjected to global and local forces that are functions of the layout of that scene and the locomotive behavior of other individuals in his or her vicinity. The key ingredients of the force model are three floor fields that are inspired by research in the field of evacuation dynamics; namely, Static Floor Field (SFF), Dynamic Floor Field (DFF), and Boundary Floor Field (BFF). These fields determine the probability of moving from one location to the next by converting the long-range forces into local forces. The SFF specifies regions of the scene that are attractive in nature, such as an exit location. The DFF, which is based on the idea of active walker models, corresponds to the virtual traces created by the movements of nearby individuals in the scene. The BFF specifies influences exhibited by the barriers within the scene, such as walls and no-entry areas. By combining influence from all three fields with the available appearance information, we are able to track individuals in high-density crowds. The results are reported on real-world sequences of marathons and railway stations that contain thousands of people. A comparative analysis with respect to an appearance-based mean shift tracker is also conducted by generating the ground truth. The result of this analysis demonstrates the benefit of using floor fields in crowded scenes. The occurrence of occlusion is very frequent in crowded scenes due to a high number of interacting objects. To overcome this challenge, we propose an algorithm that has been developed to augment a generic tracking algorithm to perform persistent tracking in crowded environments. The algorithm exploits the contextual knowledge, which is divided into two categories consisting of motion context (MC) and appearance context (AC). The MC is a collection of trajectories that are representative of the motion of the occluded or unobserved object. These trajectories belong to other moving individuals in a given environment. The MC is constructed using a clustering scheme based on the Lyapunov Characteristic Exponent (LCE), which measures the mean exponential rate of convergence or divergence of the nearby trajectories in a given state space. Next, the MC is used to predict the location of the occluded or unobserved object in a regression framework. It is important to note that the LCE is used for measuring divergence between a pair of particles while the FTLE field is obtained by computing the LCE for a grid of particles. The appearance context (AC) of a target object consists of its own appearance history and appearance information of the other objects that are occluded. The intent is to make the appearance descriptor of the target object more discriminative with respect to other unobserved objects, thereby reducing the possible confusion between the unobserved objects upon re-acquisition. This is achieved by learning the distribution of the intra-class variation of each occluded object using all of its previous observations. In addition, a distribution of inter-class variation for each target-unobservable object pair is constructed. Finally, the re-acquisition decision is made using both the MC and the AC
    corecore